This repository was archived by the owner on Apr 17, 2023. It is now read-only.
forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_visualization.py
127 lines (111 loc) · 4.33 KB
/
test_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) Open-MMLab. All rights reserved.
import os
import os.path as osp
import tempfile
import mmcv
import numpy as np
import pytest
import torch
from mmdet.core import visualization as vis
def test_color():
assert vis.color_val_matplotlib(mmcv.Color.blue) == (0., 0., 1.)
assert vis.color_val_matplotlib('green') == (0., 1., 0.)
assert vis.color_val_matplotlib((1, 2, 3)) == (3 / 255, 2 / 255, 1 / 255)
assert vis.color_val_matplotlib(100) == (100 / 255, 100 / 255, 100 / 255)
assert vis.color_val_matplotlib(np.zeros(3, dtype=np.int)) == (0., 0., 0.)
# forbid white color
with pytest.raises(TypeError):
vis.color_val_matplotlib([255, 255, 255])
# forbid float
with pytest.raises(TypeError):
vis.color_val_matplotlib(1.0)
# overflowed
with pytest.raises(AssertionError):
vis.color_val_matplotlib((0, 0, 500))
def test_imshow_det_bboxes():
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image',
'image.jpg')
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
out_image = vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape
assert not np.allclose(image, out_image)
os.remove(tmp_filename)
# test grayscale images
image = np.ones((10, 10), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
out_image = vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape[:2]
os.remove(tmp_filename)
# test shaped (0,)
image = np.ones((10, 10, 3), np.uint8)
bbox = np.ones((0, 4))
label = np.ones((0, ))
vis.imshow_det_bboxes(
image, bbox, label, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test mask
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
segms = np.random.random((2, 10, 10)) > 0.5
segms = np.array(segms, np.int32)
vis.imshow_det_bboxes(
image, bbox, label, segms, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test tensor mask type error
with pytest.raises(AttributeError):
segms = torch.tensor(segms)
vis.imshow_det_bboxes(image, bbox, label, segms, show=False)
def test_imshow_gt_det_bboxes():
tmp_filename = osp.join(tempfile.gettempdir(), 'det_bboxes_image',
'image.jpg')
image = np.ones((10, 10, 3), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
annotation = dict(gt_bboxes=bbox, gt_labels=label)
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]])
result = [det_result]
out_image = vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
assert image.shape == out_image.shape
assert not np.allclose(image, out_image)
os.remove(tmp_filename)
# test grayscale images
image = np.ones((10, 10), np.uint8)
bbox = np.array([[2, 1, 3, 3], [3, 4, 6, 6]])
label = np.array([0, 1])
annotation = dict(gt_bboxes=bbox, gt_labels=label)
det_result = np.array([[2, 1, 3, 3, 0], [3, 4, 6, 6, 1]])
result = [det_result]
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test numpy mask
gt_mask = np.ones((2, 10, 10))
annotation['gt_masks'] = gt_mask
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test tensor mask
gt_mask = torch.ones((2, 10, 10))
annotation['gt_masks'] = gt_mask
vis.imshow_gt_det_bboxes(
image, annotation, result, out_file=tmp_filename, show=False)
assert osp.isfile(tmp_filename)
os.remove(tmp_filename)
# test unsupported type
annotation['gt_masks'] = []
with pytest.raises(TypeError):
vis.imshow_gt_det_bboxes(image, annotation, result, show=False)