This repository was archived by the owner on Apr 17, 2023. It is now read-only.
forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_exported.py
246 lines (210 loc) · 9.14 KB
/
test_exported.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (C) 2020-2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
import argparse
import cv2
import mmcv
import numpy as np
import sys
from mmcv.parallel import collate
from mmdet.apis.inference import LoadImage
from mmdet.core import encode_mask_results
from mmdet.core.bbox.transforms import bbox2result
from mmdet.core.mask.transforms import mask2result
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.datasets.pipelines import Compose
from mmdet.utils import ExtendedDictAction
def postprocess(result, img_meta, num_classes=80, rescale=True):
det_bboxes = result['boxes']
det_labels = result['labels']
det_masks = result.get('masks', None)
det_texts = result.get('texts', None)
if rescale:
img_h, img_w = img_meta[0]['ori_shape'][:2]
scale = img_meta[0]['scale_factor']
det_bboxes[:, :4] /= scale
else:
img_h, img_w = img_meta[0]['img_shape'][:2]
det_bboxes[:, 0:4:2] = np.clip(det_bboxes[:, 0:4:2], 0, img_w - 1)
det_bboxes[:, 1:4:2] = np.clip(det_bboxes[:, 1:4:2], 0, img_h - 1)
bbox_results = bbox2result(det_bboxes, det_labels, num_classes)
if det_masks is not None:
segm_results = mask2result(
det_bboxes,
det_labels,
det_masks,
num_classes,
mask_thr_binary=0.5,
img_size=(img_h, img_w))
segm_results = encode_mask_results(segm_results)
if det_texts is not None:
return bbox_results, segm_results, det_texts
else:
return bbox_results, segm_results
return bbox_results
def empty_result(num_classes=80, with_mask=False):
bbox_results = [
np.zeros((0, 5), dtype=np.float32) for _ in range(num_classes)
]
if with_mask:
segm_results = [[] for _ in range(num_classes)]
return bbox_results, segm_results
return bbox_results
class VideoDataset:
def __init__(self, path, cfg, device='cpu'):
self.path = path
self.video = cv2.VideoCapture(self.path)
assert self.video.isOpened()
self.video.set(cv2.CAP_PROP_BUFFERSIZE, 1)
self.cfg = cfg
self.device = device
# build the data pipeline
self.test_pipeline = [LoadImage()] + self.cfg.test.pipeline[1:]
self.test_pipeline = Compose(self.test_pipeline)
def __getitem__(self, idx):
status, img = self.video.read()
if not status:
self.video.release()
raise StopIteration
data = dict(img=img)
data = self.test_pipeline(data)
data = collate([data], samples_per_gpu=1)
return data
def __len__(self):
return sys.maxsize
def main(args):
if args.model.endswith('.onnx'):
backend = 'onnx'
elif args.model.endswith('.xml'):
backend = 'openvino'
else:
raise ValueError('Unknown model type.')
cfg = mmcv.Config.fromfile(args.config)
if args.update_config is not None:
cfg.merge_from_dict(args.update_config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
cfg.model.pretrained = None
cfg.data.test.test_mode = True
if backend == 'openvino':
assert cfg.data.test.pipeline[1]['type'] == 'MultiScaleFlipAug'
normalize_idx = [i for i, v in enumerate(cfg.data.test.pipeline[1]['transforms']) if v['type'] == 'Normalize'][0]
cfg.data.test.pipeline[1]['transforms'][normalize_idx]['mean'] = [0.0, 0.0, 0.0]
cfg.data.test.pipeline[1]['transforms'][normalize_idx]['std'] = [1.0, 1.0, 1.0]
cfg.data.test.pipeline[1]['transforms'][normalize_idx]['to_rgb'] = False
print(cfg.data.test)
if args.video is not None and args.show:
dataset = VideoDataset(int(args.video), cfg.data)
data_loader = iter(dataset)
wait_key = 1
else:
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=False,
shuffle=False)
wait_key = -1
# Valid classes + background.
classes_num = len(dataset.CLASSES) + 1
if backend == 'openvino':
extra_args = {}
if cfg.model.type == 'MaskTextSpotter':
from mmdet.utils.deployment.openvino_backend import \
MaskTextSpotterOpenVINO as Model
extra_args['text_recognition_thr'] = cfg['model'].get('roi_head', {}).get('text_thr', 0.0)
else:
from mmdet.utils.deployment.openvino_backend import \
Detector as Model
model = Model(args.model,
cfg=cfg,
classes=dataset.CLASSES,
**extra_args)
else:
from mmdet.utils.deployment.onnxruntime_backend import ModelONNXRuntime
model = ModelONNXRuntime(args.model, cfg=cfg, classes=dataset.CLASSES)
results = []
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
im_data = data['img'][0].data[0].cpu().numpy()
if len(im_data.shape) == 3:
im_data = np.expand_dims(im_data, axis=0)
elif len(im_data.shape) != 4:
raise ValueError(f'Image of unsupported shape: {im_data.shape}')
try:
result = model(im_data)
result = postprocess(
result,
data['img_metas'][0].data[0],
num_classes=classes_num,
rescale=not args.show)
except Exception as ex:
print(f'\nException raised while processing item {i}:')
print(ex)
with_mask = hasattr(model.pt_model, 'with_mask') and model.pt_model.with_mask
result = empty_result(
num_classes=classes_num,
with_mask=with_mask)
results.append(result)
if args.show:
img_meta = data['img_metas'][0].data[0][0]
norm_cfg = img_meta['img_norm_cfg']
mean = np.array(norm_cfg['mean'], dtype=np.float32)
std = np.array(norm_cfg['std'], dtype=np.float32)
display_image = im_data[0].transpose(1, 2, 0)
display_image = mmcv.imdenormalize(display_image, mean, std, to_bgr=norm_cfg['to_rgb']).astype(np.uint8)
display_image = np.ascontiguousarray(display_image)
h, w, _ = img_meta['img_shape']
display_image = display_image[:h, :w, :]
model.show(display_image, result, score_thr=args.score_thr, wait_time=wait_key)
prog_bar.update()
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(results, args.out)
if args.eval:
kwargs = cfg.get('evaluation', {})
kwargs.pop('interval', None)
kwargs.pop('gpu_collect', None)
kwargs['metric'] = args.eval
dataset.evaluate(results, **kwargs)
def parse_args():
parser = argparse.ArgumentParser(description='Test model deployed to ONNX or OpenVINO')
parser.add_argument('config', help='path to configuration file')
parser.add_argument('model', help='path to onnx model file or xml file in case of OpenVINO.')
parser.add_argument('--out', type=str, help='path to file with inference results')
parser.add_argument('--json_out', type=str, help='output result file name without extension')
parser.add_argument('--eval', type=str, nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
' "segm", "proposal", "f1" for COCO, and "mAP", "recall" for PASCAL VOC')
parser.add_argument('--video', default=None, help='run model on the video rather than the dataset')
parser.add_argument('--show', action='store_true', help='visualize results')
parser.add_argument('--score_thr', type=float, default=0.3,
help='show only detections with confidence larger than the threshold')
parser.add_argument(
'--cfg-options',
nargs='+',
action=mmcv.DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument('--update_config', nargs='+', action=ExtendedDictAction,
help='Update configuration file by parameters specified here.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args) or 0)