This repository was archived by the owner on Apr 17, 2023. It is now read-only.
forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
345 lines (299 loc) · 13.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# Copyright (C) 2018-2021 OpenMMLab
# SPDX-License-Identifier: Apache-2.0
#
# Copyright (C) 2020-2021 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
import argparse
import copy
import mmcv
import numpy as np
import os
import os.path as osp
import pycocotools.mask as maskUtils
import time
import torch.distributed as dist
import torch.multiprocessing as mp
from mmcv import Config
from mmcv.parallel import collate, scatter
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist
from mmcv.utils import get_git_hash
from mmdet import __version__
from mmdet.apis import set_random_seed, train_detector
from mmdet.apis.inference import LoadImage
from mmdet.core import BitmapMasks
from mmdet.datasets import build_dataset
from mmdet.datasets.pipelines import Compose
from mmdet.integration.nncf import check_nncf_is_enabled, get_nncf_metadata
from mmdet.models import TwoStageDetector, build_detector
from mmdet.utils import ExtendedDictAction, collect_env, get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--tensorboard-dir', help='the dir to save tensorboard logs')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--update_config', nargs='+', action=ExtendedDictAction, help='arguments in dict')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.cfg_options:
raise ValueError(
'--options and --cfg-options cannot be both '
'specified, --options is deprecated in favor of --cfg-options')
if args.options:
warnings.warn('--options is deprecated in favor of --cfg-options')
args.cfg_options = args.options
return args
def determine_max_batch_size(cfg, distributed, dataset_len_per_gpu):
def get_fake_input(cfg, orig_img_shape=(128, 128, 3), device='cuda'):
test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
test_pipeline = Compose(test_pipeline)
data = dict(img=np.zeros(orig_img_shape, dtype=np.uint8))
data = test_pipeline(data)
data = scatter(collate([data], samples_per_gpu=1), [device])[0]
return data
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg).cuda()
if 'pipeline' in cfg.data.train:
img_shape = [t for t in cfg.data.train.pipeline if t['type'] == 'Resize'][0]['img_scale']
else:
img_shape = [t for t in cfg.data.train.dataset.pipeline if t['type'] == 'Resize'][0][
'img_scale']
channels = 3
fake_input = get_fake_input(cfg, orig_img_shape=list(img_shape) + [channels])
img_shape = fake_input['img_metas'][0][0]['pad_shape']
width, height = img_shape[0], img_shape[1]
percentage = 0.9
min_bs = 2
max_bs = min(512, int(dataset_len_per_gpu / percentage) + 1)
step = 1
batch_size = min_bs
for bs in range(min_bs, max_bs, step):
try:
gt_boxes = [torch.tensor([[0., 0., width, height]]).cuda() for _ in range(bs)]
gt_labels = [torch.tensor([0], dtype=torch.long).cuda() for _ in range(bs)]
img_metas = [fake_input['img_metas'][0][0] for _ in range(bs)]
gt_masks = None
if isinstance(model, TwoStageDetector) and model.roi_head.with_mask:
rles = maskUtils.frPyObjects(
[[0.0, 0.0, width, 0.0, width, height, 0.0, height]], height, width)
rle = maskUtils.merge(rles)
mask = maskUtils.decode(rle)
gt_masks = [BitmapMasks([mask], height, width) for _ in range(bs)]
if gt_masks is None:
model(torch.rand(bs, channels, height, width).cuda(), img_metas=img_metas,
gt_bboxes=gt_boxes, gt_labels=gt_labels)
else:
model(torch.rand(bs, channels, height, width).cuda(), img_metas=img_metas,
gt_bboxes=gt_boxes, gt_labels=gt_labels, gt_masks=gt_masks)
batch_size = bs
except RuntimeError as e:
if str(e).startswith('CUDA out of memory'):
break
resulting_batch_size = int(batch_size * percentage)
del model
torch.cuda.empty_cache()
if distributed:
rank, world_size = get_dist_info()
resulting_batch_size = torch.tensor(resulting_batch_size).cuda()
dist.all_reduce(resulting_batch_size, torch.distributed.ReduceOp.MIN)
print('rank', rank, 'resulting_batch_size', resulting_batch_size)
resulting_batch_size = int(resulting_batch_size.cpu())
else:
print('resulting_batch_size', resulting_batch_size)
return resulting_batch_size
def init_dist_cpu(launcher, backend, **kwargs):
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
if launcher == 'pytorch':
dist.init_process_group(backend=backend, **kwargs)
else:
raise ValueError(f'Invalid launcher type: {launcher}')
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
cfg_samples_per_gpu = cfg.data.samples_per_gpu
if args.update_config is not None:
cfg.merge_from_dict(args.update_config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
if cfg.get('custom_imports', None):
from mmcv.utils import import_modules_from_strings
import_modules_from_strings(**cfg['custom_imports'])
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
if torch.cuda.is_available():
init_dist(args.launcher, **cfg.dist_params)
else:
cfg.dist_params['backend'] = 'gloo'
init_dist_cpu(args.launcher, **cfg.dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
if args.tensorboard_dir is not None:
hooks = [hook for hook in cfg.log_config.hooks if hook.type == 'TensorboardLoggerHook']
if hooks:
hooks[0].log_dir = args.tensorboard_dir
else:
logger.warning('Failed to find TensorboardLoggerHook')
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
meta['config'] = cfg.pretty_text
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
if cfg.get('nncf_config'):
check_nncf_is_enabled()
logger.info('NNCF config: {}'.format(cfg.nncf_config))
meta.update(get_nncf_metadata())
# set random seeds
if args.seed is not None:
logger.info(f'Set random seed to {args.seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
meta['exp_name'] = osp.basename(args.config)
model = build_detector(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
datasets = [build_dataset(cfg.data.train)]
dataset_len_per_gpu = sum(len(dataset) for dataset in datasets)
if distributed:
dataset_len_per_gpu = dataset_len_per_gpu // get_dist_info()[1]
assert dataset_len_per_gpu > 0
if cfg.data.samples_per_gpu == 'auto':
if torch.cuda.is_available():
logger.info('Auto-selection of samples per gpu (batch size).')
cfg.data.samples_per_gpu = determine_max_batch_size(cfg, distributed, dataset_len_per_gpu)
logger.info(f'Auto selected batch size: {cfg.data.samples_per_gpu} {dataset_len_per_gpu}')
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
else:
logger.warning('Auto-selection of batch size is not implemented for CPU.')
logger.warning('Setting batch size to value taken from configuration file.')
cfg.data.samples_per_gpu = cfg_samples_per_gpu
if dataset_len_per_gpu < cfg.data.samples_per_gpu:
cfg.data.samples_per_gpu = dataset_len_per_gpu
logger.warning(f'Decreased samples_per_gpu to: {cfg.data.samples_per_gpu} '
f'because of dataset length: {dataset_len_per_gpu} '
f'and gpus number: {get_dist_info()[1]}')
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__ + get_git_hash()[:7],
CLASSES=datasets[0].CLASSES)
# also save nncf status in the checkpoint -- it is important,
# since it is used in wrap_nncf_model for loading NNCF-compressed models
if cfg.get('nncf_config'):
nncf_metadata = get_nncf_metadata()
cfg.checkpoint_config.meta.update(nncf_metadata)
else:
# cfg.checkpoint_config is None
assert not cfg.get('nncf_config'), (
"NNCF is enabled, but checkpoint_config is not set -- "
"cannot store NNCF metainfo into checkpoints")
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
main()