-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy pathmodels.py
389 lines (338 loc) · 13.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import transformers
from transformers import RobertaTokenizer
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel, RobertaLMHead
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, BertLMPredictionHead
from transformers.activations import gelu
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.modeling_outputs import SequenceClassifierOutput, BaseModelOutputWithPoolingAndCrossAttentions
class MLPLayer(nn.Module):
"""
Head for getting sentence representations over RoBERTa/BERT's CLS representation.
"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, features, **kwargs):
x = self.dense(features)
x = self.activation(x)
return x
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
class Pooler(nn.Module):
"""
Parameter-free poolers to get the sentence embedding
'cls': [CLS] representation with BERT/RoBERTa's MLP pooler.
'cls_before_pooler': [CLS] representation without the original MLP pooler.
'avg': average of the last layers' hidden states at each token.
'avg_top2': average of the last two layers.
'avg_first_last': average of the first and the last layers.
"""
def __init__(self, pooler_type):
super().__init__()
self.pooler_type = pooler_type
assert self.pooler_type in ["cls", "cls_before_pooler", "avg", "avg_top2", "avg_first_last"], "unrecognized pooling type %s" % self.pooler_type
def forward(self, attention_mask, outputs):
last_hidden = outputs.last_hidden_state
pooler_output = outputs.pooler_output
hidden_states = outputs.hidden_states
if self.pooler_type in ['cls_before_pooler', 'cls']:
return last_hidden[:, 0]
elif self.pooler_type == "avg":
return ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1))
elif self.pooler_type == "avg_first_last":
first_hidden = hidden_states[1]
last_hidden = hidden_states[-1]
pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
elif self.pooler_type == "avg_top2":
second_last_hidden = hidden_states[-2]
last_hidden = hidden_states[-1]
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
else:
raise NotImplementedError
def cl_init(cls, config):
"""
Contrastive learning class init function.
"""
cls.pooler_type = cls.model_args.pooler_type
cls.pooler = Pooler(cls.model_args.pooler_type)
if cls.model_args.pooler_type == "cls":
cls.mlp = MLPLayer(config)
cls.sim = Similarity(temp=cls.model_args.temp)
cls.init_weights()
def cl_forward(cls,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
mlm_input_ids=None,
mlm_labels=None,
):
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
ori_input_ids = input_ids
batch_size = input_ids.size(0)
# Number of sentences in one instance
# 2: pair instance; 3: pair instance with a hard negative
num_sent = input_ids.size(1)
mlm_outputs = None
# Flatten input for encoding
input_ids = input_ids.view((-1, input_ids.size(-1))) # (bs * num_sent, len)
attention_mask = attention_mask.view((-1, attention_mask.size(-1))) # (bs * num_sent len)
if token_type_ids is not None:
token_type_ids = token_type_ids.view((-1, token_type_ids.size(-1))) # (bs * num_sent, len)
# Get raw embeddings
outputs = encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
# MLM auxiliary objective
if mlm_input_ids is not None:
mlm_input_ids = mlm_input_ids.view((-1, mlm_input_ids.size(-1)))
mlm_outputs = encoder(
mlm_input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.model_args.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
# Pooling
pooler_output = cls.pooler(attention_mask, outputs)
pooler_output = pooler_output.view((batch_size, num_sent, pooler_output.size(-1))) # (bs, num_sent, hidden)
# If using "cls", we add an extra MLP layer
# (same as BERT's original implementation) over the representation.
if cls.pooler_type == "cls":
pooler_output = cls.mlp(pooler_output)
# Separate representation
z1, z2 = pooler_output[:,0], pooler_output[:,1]
# Hard negative
if num_sent == 3:
z3 = pooler_output[:, 2]
# Gather all embeddings if using distributed training
if dist.is_initialized() and cls.training:
# Gather hard negative
if num_sent >= 3:
z3_list = [torch.zeros_like(z3) for _ in range(dist.get_world_size())]
dist.all_gather(tensor_list=z3_list, tensor=z3.contiguous())
z3_list[dist.get_rank()] = z3
z3 = torch.cat(z3_list, 0)
# Dummy vectors for allgather
z1_list = [torch.zeros_like(z1) for _ in range(dist.get_world_size())]
z2_list = [torch.zeros_like(z2) for _ in range(dist.get_world_size())]
# Allgather
dist.all_gather(tensor_list=z1_list, tensor=z1.contiguous())
dist.all_gather(tensor_list=z2_list, tensor=z2.contiguous())
# Since allgather results do not have gradients, we replace the
# current process's corresponding embeddings with original tensors
z1_list[dist.get_rank()] = z1
z2_list[dist.get_rank()] = z2
# Get full batch embeddings: (bs x N, hidden)
z1 = torch.cat(z1_list, 0)
z2 = torch.cat(z2_list, 0)
cos_sim = cls.sim(z1.unsqueeze(1), z2.unsqueeze(0))
# Hard negative
if num_sent >= 3:
z1_z3_cos = cls.sim(z1.unsqueeze(1), z3.unsqueeze(0))
cos_sim = torch.cat([cos_sim, z1_z3_cos], 1)
labels = torch.arange(cos_sim.size(0)).long().to(cls.device)
loss_fct = nn.CrossEntropyLoss()
# Calculate loss with hard negatives
if num_sent == 3:
# Note that weights are actually logits of weights
z3_weight = cls.model_args.hard_negative_weight
weights = torch.tensor(
[[0.0] * (cos_sim.size(-1) - z1_z3_cos.size(-1)) + [0.0] * i + [z3_weight] + [0.0] * (z1_z3_cos.size(-1) - i - 1) for i in range(z1_z3_cos.size(-1))]
).to(cls.device)
cos_sim = cos_sim + weights
loss = loss_fct(cos_sim, labels)
# Calculate loss for MLM
if mlm_outputs is not None and mlm_labels is not None:
mlm_labels = mlm_labels.view(-1, mlm_labels.size(-1))
prediction_scores = cls.lm_head(mlm_outputs.last_hidden_state)
masked_lm_loss = loss_fct(prediction_scores.view(-1, cls.config.vocab_size), mlm_labels.view(-1))
loss = loss + cls.model_args.mlm_weight * masked_lm_loss
if not return_dict:
output = (cos_sim,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=cos_sim,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def sentemb_forward(
cls,
encoder,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else cls.config.use_return_dict
outputs = encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=True if cls.pooler_type in ['avg_top2', 'avg_first_last'] else False,
return_dict=True,
)
pooler_output = cls.pooler(attention_mask, outputs)
if cls.pooler_type == "cls" and not cls.model_args.mlp_only_train:
pooler_output = cls.mlp(pooler_output)
if not return_dict:
return (outputs[0], pooler_output) + outputs[2:]
return BaseModelOutputWithPoolingAndCrossAttentions(
pooler_output=pooler_output,
last_hidden_state=outputs.last_hidden_state,
hidden_states=outputs.hidden_states,
)
class BertForCL(BertPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, *model_args, **model_kargs):
super().__init__(config)
self.model_args = model_kargs["model_args"]
self.bert = BertModel(config, add_pooling_layer=False)
if self.model_args.do_mlm:
self.lm_head = BertLMPredictionHead(config)
cl_init(self, config)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
sent_emb=False,
mlm_input_ids=None,
mlm_labels=None,
):
if sent_emb:
return sentemb_forward(self, self.bert,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
return cl_forward(self, self.bert,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mlm_input_ids=mlm_input_ids,
mlm_labels=mlm_labels,
)
class RobertaForCL(RobertaPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, *model_args, **model_kargs):
super().__init__(config)
self.model_args = model_kargs["model_args"]
self.roberta = RobertaModel(config, add_pooling_layer=False)
if self.model_args.do_mlm:
self.lm_head = RobertaLMHead(config)
cl_init(self, config)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
sent_emb=False,
mlm_input_ids=None,
mlm_labels=None,
):
if sent_emb:
return sentemb_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
else:
return cl_forward(self, self.roberta,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
labels=labels,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
mlm_input_ids=mlm_input_ids,
mlm_labels=mlm_labels,
)