-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpgbart.py
761 lines (625 loc) · 23.9 KB
/
pgbart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
# Copyright 2022 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import numpy as np
import numpy.typing as npt
import pymc as pm
import pytensor.tensor as pt
from numba import njit
from pymc.initial_point import PointType
from pymc.model import Model, modelcontext
from pymc.pytensorf import inputvars, join_nonshared_inputs, make_shared_replacements
from pymc.step_methods.arraystep import ArrayStepShared
from pymc.step_methods.compound import Competence
from pytensor import config
from pytensor import function as pytensor_function
from pytensor.tensor.variable import Variable
from pymc_bart.bart import BARTRV
from pymc_bart.split_rules import ContinuousSplitRule
from pymc_bart.tree import (
Node,
Tree,
get_depth,
get_idx_left_child,
get_idx_right_child,
)
class ParticleTree:
"""Particle tree."""
__slots__ = "tree", "expansion_nodes", "log_weight"
def __init__(self, tree: Tree):
self.tree: Tree = tree.copy()
self.expansion_nodes: list[int] = [0]
self.log_weight: float = 0
def copy(self) -> "ParticleTree":
p = ParticleTree(self.tree)
p.expansion_nodes = self.expansion_nodes.copy()
return p
def sample_tree(
self,
ssv,
available_predictors,
prior_prob_leaf_node,
X,
missing_data,
sum_trees,
leaf_sd,
m,
response,
normal,
shape,
) -> bool:
tree_grew = False
if self.expansion_nodes:
index_leaf_node = self.expansion_nodes.pop(0)
# Probability that this node will remain a leaf node
prob_leaf = prior_prob_leaf_node[get_depth(index_leaf_node)]
if prob_leaf < np.random.random():
idx_new_nodes = grow_tree(
self.tree,
index_leaf_node,
ssv,
available_predictors,
X,
missing_data,
sum_trees,
leaf_sd,
m,
response,
normal,
shape,
)
if idx_new_nodes is not None:
self.expansion_nodes.extend(idx_new_nodes)
tree_grew = True
return tree_grew
class PGBART(ArrayStepShared):
"""
Particle Gibss BART sampling step.
Parameters
----------
vars: list
List of value variables for sampler
num_particles : tuple
Number of particles. Defaults to 10
batch : tuple
Number of trees fitted per step. The first element is the batch size during tuning and the
second the batch size after tuning. Defaults to (0.1, 0.1), meaning 10% of the `m` trees
during tuning and after tuning.
model: PyMC Model
Optional model for sampling step. Defaults to None (taken from context).
"""
name = "pgbart"
default_blocked = False
generates_stats = True
stats_dtypes_shapes: dict[str, tuple[type, list]] = {
"variable_inclusion": (object, []),
"tune": (bool, []),
}
def __init__( # noqa: PLR0912, PLR0915
self,
vars: list[pm.Distribution] | None = None,
num_particles: int = 10,
batch: tuple[float, float] = (0.1, 0.1),
model: Optional[Model] = None,
initial_point: PointType | None = None,
compile_kwargs: dict | None = None,
) -> None:
model = modelcontext(model)
if initial_point is None:
initial_point = model.initial_point()
if vars is None:
vars = model.value_vars
else:
vars = [model.rvs_to_values.get(var, var) for var in vars]
vars = inputvars(vars)
if vars is None:
raise ValueError("Unable to find variables to sample")
value_bart = vars[0]
self.bart = model.values_to_rvs[value_bart].owner.op
if isinstance(self.bart.X, Variable):
self.X = self.bart.X.eval()
else:
self.X = self.bart.X
if isinstance(self.bart.Y, Variable):
self.Y = self.bart.Y.eval()
else:
self.Y = self.bart.Y
self.missing_data = np.any(np.isnan(self.X))
self.m = self.bart.m
self.response = self.bart.response
shape = initial_point[value_bart.name].shape
self.shape = 1 if len(shape) == 1 else shape[0]
# Set trees_shape (dim for separate tree structures)
# and leaves_shape (dim for leaf node values)
# One of the two is always one, the other equal to self.shape
self.trees_shape = self.shape if self.bart.separate_trees else 1
self.leaves_shape = self.shape if not self.bart.separate_trees else 1
if self.bart.split_prior.size == 0:
self.alpha_vec = np.ones(self.X.shape[1])
else:
self.alpha_vec = self.bart.split_prior
if self.bart.split_rules:
self.split_rules = self.bart.split_rules
else:
self.split_rules = [ContinuousSplitRule] * self.X.shape[1]
for idx, rule in enumerate(self.split_rules):
if rule is ContinuousSplitRule:
self.X[:, idx] = jitter_duplicated(self.X[:, idx], np.nanstd(self.X[:, idx]))
init_mean = self.Y.mean()
self.num_observations = self.X.shape[0]
self.num_variates = self.X.shape[1]
self.available_predictors = list(range(self.num_variates))
# if data is binary
self.leaf_sd = np.ones((self.trees_shape, self.leaves_shape))
y_unique = np.unique(self.Y)
if y_unique.size == 2 and np.all(y_unique == [0, 1]):
self.leaf_sd *= 3 / self.m**0.5
else:
self.leaf_sd *= self.Y.std() / self.m**0.5
self.running_sd = [
RunningSd((self.leaves_shape, self.num_observations)) for _ in range(self.trees_shape)
]
self.sum_trees = np.full(
(self.trees_shape, self.leaves_shape, self.Y.shape[0]), init_mean
).astype(config.floatX)
self.sum_trees_noi = self.sum_trees - init_mean
self.a_tree = Tree.new_tree(
leaf_node_value=init_mean / self.m,
idx_data_points=np.arange(self.num_observations, dtype="int32"),
num_observations=self.num_observations,
shape=self.leaves_shape,
split_rules=self.split_rules,
)
self.normal = NormalSampler(1, self.leaves_shape)
self.uniform = UniformSampler(0, 1)
self.prior_prob_leaf_node = compute_prior_probability(self.bart.alpha, self.bart.beta)
self.ssv = SampleSplittingVariable(self.alpha_vec)
self.tune = True
batch_0 = max(1, int(self.m * batch[0]))
batch_1 = max(1, int(self.m * batch[1]))
self.batch = (batch_0, batch_1)
self.num_particles = num_particles
self.indices = list(range(1, num_particles))
shared = make_shared_replacements(initial_point, vars, model)
self.likelihood_logp = logp(initial_point, [model.datalogp], vars, shared)
self.all_particles = [
[ParticleTree(self.a_tree) for _ in range(self.m)] for _ in range(self.trees_shape)
]
self.all_trees = np.array([[p.tree for p in pl] for pl in self.all_particles])
self.lower = 0
self.iter = 0
super().__init__(vars, shared)
def astep(self, _):
variable_inclusion = np.zeros(self.num_variates, dtype="int")
upper = min(self.lower + self.batch[not self.tune], self.m)
tree_ids = range(self.lower, upper)
self.lower = upper if upper < self.m else 0
for odim in range(self.trees_shape):
for tree_id in tree_ids:
self.iter += 1
# Compute the sum of trees without the old tree that we are attempting to replace
self.sum_trees_noi[odim] = (
self.sum_trees[odim] - self.all_particles[odim][tree_id].tree._predict()
)
# Generate an initial set of particles
# at the end we return one of these particles as the new tree
particles = self.init_particles(tree_id, odim)
while True:
# Sample each particle (try to grow each tree), except for the first one
stop_growing = True
for p in particles[1:]:
if p.sample_tree(
self.ssv,
self.available_predictors,
self.prior_prob_leaf_node,
self.X,
self.missing_data,
self.sum_trees[odim],
self.leaf_sd[odim],
self.m,
self.response,
self.normal,
self.leaves_shape,
):
self.update_weight(p, odim)
if p.expansion_nodes:
stop_growing = False
if stop_growing:
break
# Normalize weights
normalized_weights = self.normalize(particles[1:])
# Resample
particles = self.resample(particles, normalized_weights)
normalized_weights = self.normalize(particles)
# Get the new particle and associated tree
self.all_particles[odim][tree_id], new_tree = self.get_particle_tree(
particles, normalized_weights
)
# Update the sum of trees
new = new_tree._predict()
self.sum_trees[odim] = self.sum_trees_noi[odim] + new
# To reduce memory usage, we trim the tree
self.all_trees[odim][tree_id] = new_tree.trim()
if self.tune:
# Update the splitting variable and the splitting variable sampler
if self.iter > self.m:
self.ssv = SampleSplittingVariable(self.alpha_vec)
for index in new_tree.get_split_variables():
self.alpha_vec[index] += 1
# update standard deviation at leaf nodes
if self.iter > 2:
self.leaf_sd[odim] = self.running_sd[odim].update(new)
else:
self.running_sd[odim].update(new)
else:
# update the variable inclusion
for index in new_tree.get_split_variables():
variable_inclusion[index] += 1
if not self.tune:
self.bart.all_trees.append(self.all_trees)
stats = {"variable_inclusion": variable_inclusion, "tune": self.tune}
return self.sum_trees, [stats]
def normalize(self, particles: list[ParticleTree]) -> float:
"""
Use softmax to get normalized_weights.
"""
log_w = np.array([p.log_weight for p in particles])
log_w_max = log_w.max()
log_w_ = log_w - log_w_max
wei = np.exp(log_w_) + 1e-12
return wei / wei.sum()
def resample(
self, particles: list[ParticleTree], normalized_weights: npt.NDArray
) -> list[ParticleTree]:
"""
Use systematic resample for all but the first particle
Ensure particles are copied only if needed.
"""
new_indices = self.systematic(normalized_weights) + 1
seen: list[int] = []
new_particles: list[ParticleTree] = []
for idx in new_indices:
if idx in seen:
new_particles.append(particles[idx].copy())
else:
new_particles.append(particles[idx])
seen.append(idx)
particles[1:] = new_particles
return particles
def get_particle_tree(
self, particles: list[ParticleTree], normalized_weights: npt.NDArray
) -> tuple[ParticleTree, Tree]:
"""
Sample a new particle and associated tree
"""
new_index = self.systematic(normalized_weights)[
discrete_uniform_sampler(self.num_particles)
]
new_particle = particles[new_index]
return new_particle, new_particle.tree
def systematic(self, normalized_weights: npt.NDArray) -> npt.NDArray[np.int_]:
"""
Systematic resampling.
Return indices in the range 0, ..., len(normalized_weights)
Note: adapted from https://github.com/nchopin/particles
"""
lnw = len(normalized_weights)
single_uniform = (self.uniform.rvs() + np.arange(lnw)) / lnw
return inverse_cdf(single_uniform, normalized_weights)
def init_particles(self, tree_id: int, odim: int) -> list[ParticleTree]:
"""Initialize particles."""
p0: ParticleTree = self.all_particles[odim][tree_id]
# The old tree does not grow so we update the weight only once
self.update_weight(p0, odim)
particles: list[ParticleTree] = [p0]
particles.extend(ParticleTree(self.a_tree) for _ in self.indices)
return particles
def update_weight(self, particle: ParticleTree, odim: int) -> None:
"""
Update the weight of a particle.
"""
delta = (
np.identity(self.trees_shape)[odim][:, None, None]
* particle.tree._predict()[None, :, :]
)
new_likelihood = self.likelihood_logp((self.sum_trees_noi + delta).flatten())
particle.log_weight = new_likelihood
@staticmethod
def competence(var: pm.Distribution, has_grad: bool) -> Competence:
"""PGBART is only suitable for BART distributions."""
dist = getattr(var.owner, "op", None)
if isinstance(dist, BARTRV):
return Competence.IDEAL
return Competence.INCOMPATIBLE
class RunningSd:
"""Welford's online algorithm for computing the variance/standard deviation"""
def __init__(self, shape: tuple[int, ...]) -> None:
self.count = 0 # number of data points
self.mean = np.zeros(shape) # running mean
self.m_2 = np.zeros(shape) # running second moment
def update(self, new_value: npt.NDArray) -> Union[float, npt.NDArray]:
self.count = self.count + 1
self.mean, self.m_2, std = _update(self.count, self.mean, self.m_2, new_value)
return fast_mean(std)
@njit
def _update(
count: int,
mean: npt.NDArray,
m_2: npt.NDArray,
new_value: npt.NDArray,
) -> tuple[npt.NDArray, npt.NDArray, Union[float, npt.NDArray]]:
delta = new_value - mean
mean += delta / count
delta2 = new_value - mean
m_2 += delta * delta2
std = (m_2 / count) ** 0.5
return mean, m_2, std
class SampleSplittingVariable:
def __init__(self, alpha_vec: npt.NDArray) -> None:
"""
Sample splitting variables proportional to `alpha_vec`.
This is equivalent to compute the posterior mean of a Dirichlet-Multinomial model.
This enforce sparsity.
"""
self.enu = list(enumerate(np.cumsum(alpha_vec / alpha_vec.sum())))
def rvs(self) -> Union[int, tuple[int, float]]:
rnd: float = np.random.random()
for i, val in self.enu:
if rnd <= val:
return i
return self.enu[-1]
def compute_prior_probability(alpha: int, beta: int) -> list[float]:
"""
Calculate the probability of the node being a leaf node (1 - p(being split node)).
Parameters
----------
alpha : float
beta: float
Returns
-------
list with probabilities for leaf nodes
"""
prior_leaf_prob: list[float] = [0]
depth = 0
while prior_leaf_prob[-1] < 0.9999:
prior_leaf_prob.append(1 - (alpha * ((1 + depth) ** (-beta))))
depth += 1
prior_leaf_prob.append(1)
return prior_leaf_prob
def grow_tree(
tree,
index_leaf_node,
ssv,
available_predictors,
X,
missing_data,
sum_trees,
leaf_sd,
m,
response,
normal,
shape,
):
current_node = tree.get_node(index_leaf_node)
idx_data_points = current_node.idx_data_points
index_selected_predictor = ssv.rvs()
selected_predictor = available_predictors[index_selected_predictor]
idx_data_points, available_splitting_values = filter_missing_values(
X[idx_data_points, selected_predictor], idx_data_points, missing_data
)
split_rule = tree.split_rules[selected_predictor]
split_value = split_rule.get_split_value(available_splitting_values)
if split_value is None:
return None
to_left = split_rule.divide(available_splitting_values, split_value)
new_idx_data_points = idx_data_points[to_left], idx_data_points[~to_left]
current_node_children = (
get_idx_left_child(index_leaf_node),
get_idx_right_child(index_leaf_node),
)
if response == "mix":
response = "linear" if np.random.random() >= 0.5 else "constant"
for idx in range(2):
idx_data_point = new_idx_data_points[idx]
node_value, linear_params = draw_leaf_value(
y_mu_pred=sum_trees[:, idx_data_point],
x_mu=X[idx_data_point, selected_predictor],
m=m,
norm=normal.rvs() * leaf_sd,
shape=shape,
response=response,
)
new_node = Node.new_leaf_node(
value=node_value,
nvalue=len(idx_data_point),
idx_data_points=idx_data_point,
linear_params=linear_params,
)
tree.set_node(current_node_children[idx], new_node)
tree.grow_leaf_node(current_node, selected_predictor, split_value, index_leaf_node)
return current_node_children
def filter_missing_values(available_splitting_values, idx_data_points, missing_data):
if missing_data:
mask = ~np.isnan(available_splitting_values)
idx_data_points = idx_data_points[mask]
available_splitting_values = available_splitting_values[mask]
return idx_data_points, available_splitting_values
def draw_leaf_value(
y_mu_pred: npt.NDArray,
x_mu: npt.NDArray,
m: int,
norm: npt.NDArray,
shape: int,
response: str,
) -> tuple[npt.NDArray, Optional[npt.NDArray]]:
"""Draw Gaussian distributed leaf values."""
linear_params = None
mu_mean: npt.NDArray
if y_mu_pred.size == 0:
return np.zeros(shape), linear_params
if y_mu_pred.size == 1:
mu_mean = np.full(shape, y_mu_pred.item() / m) + norm
elif y_mu_pred.size < 3 or response == "constant":
mu_mean = fast_mean(y_mu_pred) / m + norm
else:
mu_mean, linear_params = fast_linear_fit(x=x_mu, y=y_mu_pred, m=m, norm=norm)
return mu_mean, linear_params
@njit
def fast_mean(ari: npt.NDArray) -> Union[float, npt.NDArray]:
"""Use Numba to speed up the computation of the mean."""
if ari.ndim == 1:
count = ari.shape[0]
suma = 0
for i in range(count):
suma += ari[i]
return suma / count
else:
res = np.zeros(ari.shape[0])
count = ari.shape[1]
for j in range(ari.shape[0]):
for i in range(count):
res[j] += ari[j, i]
return res / count
@njit
def fast_linear_fit(
x: npt.NDArray,
y: npt.NDArray,
m: int,
norm: npt.NDArray,
) -> tuple[npt.NDArray, list[npt.NDArray]]:
n = len(x)
y = y / m + np.expand_dims(norm, axis=1)
xbar = np.sum(x) / n
ybar = np.sum(y, axis=1) / n
x_diff = x - xbar
y_diff = y - np.expand_dims(ybar, axis=1)
x_var = np.dot(x_diff, x_diff.T)
if x_var == 0:
b = np.zeros(y.shape[0])
else:
b = np.dot(x_diff, y_diff.T) / x_var
a = ybar - b * xbar
y_fit = np.expand_dims(a, axis=1) + np.expand_dims(b, axis=1) * x
return y_fit.T, [a, b]
def discrete_uniform_sampler(upper_value):
"""Draw from the uniform distribution with bounds [0, upper_value).
This is the same and np.random.randit(upper_value) but faster.
"""
return int(np.random.random() * upper_value)
class NormalSampler:
"""Cache samples from a standard normal distribution."""
def __init__(self, scale, shape):
self.size = 1000
self.scale = scale
self.shape = shape
self.update()
def rvs(self):
if self.idx == self.size:
self.update()
pop = self.cache[:, self.idx]
self.idx += 1
return pop
def update(self):
self.idx = 0
self.cache = np.random.normal(loc=0.0, scale=self.scale, size=(self.shape, self.size))
class UniformSampler:
"""Cache samples from a uniform distribution."""
def __init__(self, lower_bound, upper_bound, shape=None):
self.size = 1000
self.upper_bound = upper_bound
self.lower_bound = lower_bound
self.shape = shape
self.update()
def rvs(self):
if self.idx == self.size:
self.update()
if self.shape is None:
pop = self.cache[self.idx]
else:
pop = self.cache[:, self.idx]
self.idx += 1
return pop
def update(self):
self.idx = 0
if self.shape is None:
self.cache = np.random.uniform(self.lower_bound, self.upper_bound, size=self.size)
else:
self.cache = np.random.uniform(
self.lower_bound, self.upper_bound, size=(self.shape, self.size)
)
@njit
def inverse_cdf(
single_uniform: npt.NDArray, normalized_weights: npt.NDArray
) -> npt.NDArray[np.int_]:
"""
Inverse CDF algorithm for a finite distribution.
Parameters
----------
single_uniform: npt.NDArray
Ordered points in [0,1]
normalized_weights: npt.NDArray)
Normalized weights
Returns
-------
new_indices: ndarray
a vector of indices in range 0, ..., len(normalized_weights)
Note: adapted from https://github.com/nchopin/particles
"""
idx = 0
a_weight = normalized_weights[0]
sul = len(single_uniform)
new_indices = np.empty(sul, dtype=np.int64)
for i in range(sul):
while single_uniform[i] > a_weight:
idx += 1
a_weight += normalized_weights[idx]
new_indices[i] = idx
return new_indices
@njit
def jitter_duplicated(array: npt.NDArray, std: float) -> npt.NDArray:
"""
Jitter duplicated values.
"""
if are_whole_number(array):
seen = []
for idx, num in enumerate(array):
if num in seen and not np.isnan(num):
array[idx] = num + np.random.normal(0, std / 12)
else:
seen.append(num)
return array
@njit
def are_whole_number(array: npt.NDArray) -> np.bool_:
"""Check if all values in array are whole numbers"""
return np.all(np.mod(array[~np.isnan(array)], 1) == 0)
def logp(
point,
out_vars: list[pm.Distribution],
vars: list[pm.Distribution],
shared: list[pt.TensorVariable],
):
"""Compile PyTensor function of the model and the input and output variables.
Parameters
----------
out_vars: List
containing :class:`pymc.Distribution` for the output variables
vars: List
containing :class:`pymc.Distribution` for the input variables
shared: List
containing :class:`pytensor.tensor.Tensor` for depended shared data
"""
out_list, inarray0 = join_nonshared_inputs(point, out_vars, vars, shared)
function = pytensor_function([inarray0], out_list[0])
function.trust_input = True
return function