-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtree.py
359 lines (311 loc) · 11.9 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Copyright 2022 The PyMC Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Generator
from functools import lru_cache
from typing import Optional, Union
import numpy as np
import numpy.typing as npt
from pytensor import config
from .split_rules import SplitRule
class Node:
"""Node of a binary tree.
Attributes
----------
value : npt.NDArray
idx_data_points : Optional[npt.NDArray[np.int_]]
idx_split_variable : int
linear_params: Optional[list[float]] = None
"""
__slots__ = "value", "nvalue", "idx_split_variable", "idx_data_points", "linear_params"
def __init__(
self,
value: npt.NDArray = np.array([-1.0]),
nvalue: int = 0,
idx_data_points: Optional[npt.NDArray[np.int_]] = None,
idx_split_variable: int = -1,
linear_params: Optional[list[npt.NDArray]] = None,
) -> None:
self.value = value
self.nvalue = nvalue
self.idx_data_points = idx_data_points
self.idx_split_variable = idx_split_variable
self.linear_params = linear_params
@classmethod
def new_leaf_node(
cls,
value: npt.NDArray,
nvalue: int = 0,
idx_data_points: Optional[npt.NDArray[np.int_]] = None,
idx_split_variable: int = -1,
linear_params: Optional[list[npt.NDArray]] = None,
) -> "Node":
return cls(
value=value,
nvalue=nvalue,
idx_data_points=idx_data_points,
idx_split_variable=idx_split_variable,
linear_params=linear_params,
)
def is_split_node(self) -> bool:
return self.idx_split_variable >= 0
def is_leaf_node(self) -> bool:
return not self.is_split_node()
def get_idx_left_child(index) -> int:
return index * 2 + 1
def get_idx_right_child(index) -> int:
return index * 2 + 2
@lru_cache
def get_depth(index: int) -> int:
return (index + 1).bit_length() - 1
class Tree:
"""Full binary tree.
A full binary tree is a tree where each node has exactly zero or two children.
This structure is used as the basic component of the Bayesian Additive Regression Tree (BART)
Attributes
----------
tree_structure : dict[int, Node]
A dictionary that represents the nodes stored in breadth-first order, based in the array
method for storing binary trees (https://en.wikipedia.org/wiki/Binary_tree#Arrays).
The dictionary's keys are integers that represent the nodes position.
The dictionary's values are objects of type Node that represent the split and leaf nodes
of the tree itself.
output: Optional[npt.NDArray]
Array of shape number of observations, shape
split_rules : list[SplitRule]
List of SplitRule objects, one per column in input data.
Allows using different split rules for different columns. Default is ContinuousSplitRule.
Other options are OneHotSplitRule and SubsetSplitRule, both meant for categorical variables.
idx_leaf_nodes : Optional[list[int]], by default None.
Array with the index of the leaf nodes of the tree.
Parameters
----------
tree_structure : Dictionary of nodes
output : Array of shape number of observations, shape
idx_leaf_nodes : List with the index of the leaf nodes of the tree.
"""
__slots__ = ("tree_structure", "output", "idx_leaf_nodes", "split_rules")
def __init__(
self,
tree_structure: dict[int, Node],
output: npt.NDArray,
split_rules: list[SplitRule],
idx_leaf_nodes: Optional[list[int]] = None,
) -> None:
self.tree_structure = tree_structure
self.idx_leaf_nodes = idx_leaf_nodes
self.split_rules = split_rules
self.output = output
@classmethod
def new_tree(
cls,
leaf_node_value: npt.NDArray,
idx_data_points: Optional[npt.NDArray[np.int_]],
num_observations: int,
shape: int,
split_rules: list[SplitRule],
) -> "Tree":
return cls(
tree_structure={
0: Node.new_leaf_node(
value=leaf_node_value,
nvalue=len(idx_data_points) if idx_data_points is not None else 0,
idx_data_points=idx_data_points,
)
},
idx_leaf_nodes=[0],
output=np.zeros((num_observations, shape)).astype(config.floatX),
split_rules=split_rules,
)
def __getitem__(self, index) -> Node:
return self.get_node(index)
def __setitem__(self, index, node) -> None:
self.set_node(index, node)
def copy(self) -> "Tree":
tree: dict[int, Node] = {
k: Node(
value=v.value,
nvalue=v.nvalue,
idx_data_points=v.idx_data_points,
idx_split_variable=v.idx_split_variable,
linear_params=v.linear_params,
)
for k, v in self.tree_structure.items()
}
idx_leaf_nodes = self.idx_leaf_nodes.copy() if self.idx_leaf_nodes is not None else None
return Tree(
tree_structure=tree,
idx_leaf_nodes=idx_leaf_nodes,
output=self.output,
split_rules=self.split_rules,
)
def get_node(self, index: int) -> Node:
return self.tree_structure[index]
def set_node(self, index: int, node: Node) -> None:
self.tree_structure[index] = node
if node.is_leaf_node() and self.idx_leaf_nodes is not None:
self.idx_leaf_nodes.append(index)
def grow_leaf_node(
self,
current_node: Node,
selected_predictor: int,
split_value: npt.NDArray,
index_leaf_node: int,
) -> None:
current_node.value = split_value
current_node.idx_split_variable = selected_predictor
current_node.idx_data_points = None
if self.idx_leaf_nodes is not None:
self.idx_leaf_nodes.remove(index_leaf_node)
def trim(self) -> "Tree":
tree: dict[int, Node] = {
k: Node(
value=v.value,
nvalue=v.nvalue,
idx_data_points=None,
idx_split_variable=v.idx_split_variable,
linear_params=v.linear_params,
)
for k, v in self.tree_structure.items()
}
return Tree(
tree_structure=tree,
idx_leaf_nodes=None,
output=np.array([-1]),
split_rules=self.split_rules,
)
def get_split_variables(self) -> Generator[int, None, None]:
for node in self.tree_structure.values():
if node.is_split_node():
yield node.idx_split_variable
def _predict(self) -> npt.NDArray:
output = self.output
if self.idx_leaf_nodes is not None:
for node_index in self.idx_leaf_nodes:
leaf_node = self.get_node(node_index)
output[leaf_node.idx_data_points] = leaf_node.value
return output.T
def predict(
self,
x: npt.NDArray,
excluded: Optional[list[int]] = None,
shape: int = 1,
) -> npt.NDArray:
"""
Predict output of tree for an (un)observed point x.
Parameters
----------
x : npt.NDArray
Unobserved point
excluded: Optional[list[int]]
Indexes of the variables to exclude when computing predictions
Returns
-------
npt.NDArray
Value of the leaf value where the unobserved point lies.
"""
if excluded is None:
excluded = []
return self._traverse_tree(X=x, excluded=excluded, shape=shape)
def _traverse_tree(
self,
X: npt.NDArray,
excluded: Optional[list[int]] = None,
shape: Union[int, tuple[int, ...]] = 1,
) -> npt.NDArray:
"""
Traverse the tree starting from the root node given an (un)observed point.
Parameters
----------
X : npt.NDArray
(Un)observed point(s)
node_index : int
Index of the node to start the traversal from
split_variable : int
Index of the variable used to split the node
excluded: Optional[list[int]]
Indexes of the variables to exclude when computing predictions
Returns
-------
npt.NDArray
Leaf node value or mean of leaf node values
"""
x_shape = (1,) if len(X.shape) == 1 else X.shape[:-1]
nd_dims = (...,) + (None,) * len(x_shape)
stack: list[tuple[int, npt.NDArray, int]] = [
(0, np.ones(x_shape), 0)
] # (node_index, weight, idx_split_variable) initial state
p_d = (
np.zeros(shape + x_shape) if isinstance(shape, tuple) else np.zeros((shape,) + x_shape)
)
while stack:
node_index, weights, idx_split_variable = stack.pop()
node = self.get_node(node_index)
if node.is_leaf_node():
params = node.linear_params
if params is None:
p_d += weights * node.value[nd_dims]
else:
p_d += weights * (
params[0][nd_dims] + params[1][nd_dims] * X[..., idx_split_variable]
)
else:
idx_split_variable = node.idx_split_variable
left_node_index, right_node_index = (
get_idx_left_child(node_index),
get_idx_right_child(node_index),
)
if excluded is not None and idx_split_variable in excluded:
prop_nvalue_left = self.get_node(left_node_index).nvalue / node.nvalue
stack.append(
(
left_node_index,
weights * prop_nvalue_left,
idx_split_variable,
)
)
stack.append(
(
right_node_index,
weights * (1 - prop_nvalue_left),
idx_split_variable,
)
)
else:
to_left = (
self.split_rules[idx_split_variable]
.divide(X[..., idx_split_variable], node.value)
.astype("float")
)
stack.append((left_node_index, weights * to_left, idx_split_variable))
stack.append((right_node_index, weights * (1 - to_left), idx_split_variable))
if len(X.shape) == 1:
p_d = p_d[..., 0]
return p_d
def _traverse_leaf_values(
self, leaf_values: list[npt.NDArray], leaf_n_values: list[int], node_index: int
) -> None:
"""
Traverse the tree appending leaf values starting from a particular node.
Parameters
----------
leaf_values : list[npt.NDArray]
node_index : int
"""
node = self.get_node(node_index)
if node.is_leaf_node():
leaf_values.append(node.value)
leaf_n_values.append(node.nvalue)
else:
self._traverse_leaf_values(leaf_values, leaf_n_values, get_idx_left_child(node_index))
self._traverse_leaf_values(leaf_values, leaf_n_values, get_idx_right_child(node_index))