-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathfdadvect_implicit.py
139 lines (92 loc) · 3.09 KB
/
fdadvect_implicit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# first-order finite-difference implicit method for linear advection
#
# We are solving a_t + u a_x = 0
#
# The upwinded implicit update appears as:
#
# n+1 n+1 n
# -C a + (1 - C) a = a
# i-1 i i
#
# where C is the CFL number
#
# We use a periodic grid with N points, 0, ..., N-1, with the data
# located at those points. This means that since 0 and N-1 are on
# the boundary, they are the same point. Therefore, we only need
# to update points 1, ..., N-1
#
# No ghost points are used here.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['mathtext.fontset'] = 'cm'
mpl.rcParams['mathtext.rm'] = 'serif'
class FDgrid:
def __init__(self, nx, xmin=0.0, xmax=1.0):
self.xmin = xmin
self.xmax = xmax
self.nx = nx
# python is zero-based. We are assuming periodic BCs, so
# points 0 and N-1 are the same. Set some integer indices to
# allow us to easily access points 1 through N-1. Point 0
# won't be explicitly updated, but rather filled by the BC
# routine.
self.ilo = 1
self.ihi = nx-1
# physical coords
self.dx = (xmax - xmin)/(nx-1)
self.x = xmin + np.arange(nx)*self.dx
# storage for the solution
self.a = np.zeros((nx), dtype=np.float64)
self.ainit = np.zeros((nx), dtype=np.float64)
def scratchArray(self):
""" return a scratch array dimensioned for our grid """
return np.zeros((self.nx), dtype=np.float64)
def fillBCs(self):
""" we don't explicitly update point 0, since it is identical
to N-1, so fill it here """
self.a[0] = self.a[self.ihi]
def evolve(nx, C, u, tmax):
# create the grid
g = FDgrid(nx)
# time info
dt = C*g.dx/u
t = 0.0
# initialize the data -- tophat
g.a[np.logical_and(g.x >= 0.333, g.x <= 0.666)] = 1.0
g.ainit = g.a.copy()
# evolution loop
A = np.zeros((g.nx-1, g.nx-1), dtype=np.float64)
# fill the boundary conditions
g.fillBCs()
while t < tmax:
# create the matrix
# loop over rows [ilo,ihi] and construct the matrix. This will
# be almost bidiagonal, but with the upper right entry also
# nonzero.
for i in range(g.nx-1):
A[i,i] = 1.0 + C
A[i,i-1] = -C
# create the RHS -- this holds all entries except for a[0]
b = g.a[g.ilo:g.ihi+1]
# solve the system
anew = np.linalg.solve(A, b)
g.a[g.ilo:g.ihi+1] = anew[:]
g.fillBCs()
t += dt
return g
u = 1.0
tmax = 1.0/u
nx = 65
CFL = [0.5, 1.0, 10.0]
for n, C in enumerate(CFL):
g = evolve(nx, C, u, tmax)
if n == 0:
plt.plot(g.x[g.ilo:g.ihi+1], g.ainit[g.ilo:g.ihi+1], ls=":", label="exact")
plt.plot(g.x[g.ilo:g.ihi+1], g.a[g.ilo:g.ihi+1], label="$C = %3.1f$" % (C))
#plt.title("N = %d" % (nx))
plt.xlabel("$x$", fontsize=16)
plt.ylabel("$a$", fontsize=16)
plt.legend(frameon=False, loc="best")
plt.tight_layout()
plt.savefig("fdadvect-implicit.pdf")