-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
Copy pathtest_examples.py
117 lines (101 loc) · 4.07 KB
/
test_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#
# Copyright 2013 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from operator import itemgetter
import tarfile
import matplotlib
import pandas as pd
from zipline import examples
from zipline.data.bundles import register, unregister
from zipline.testing import test_resource_path, parameter_space
from zipline.testing.fixtures import (
WithTmpDir,
ZiplineTestCase,
read_checked_in_benchmark_data,
)
from zipline.testing.predicates import assert_equal
from zipline.utils.cache import dataframe_cache
# Otherwise the next line sometimes complains about being run too late.
_multiprocess_can_split_ = False
matplotlib.use('Agg')
EXAMPLE_MODULES = examples.load_example_modules()
class ExamplesTests(WithTmpDir, ZiplineTestCase):
# some columns contain values with unique ids that will not be the same
@classmethod
def init_class_fixtures(cls):
super(ExamplesTests, cls).init_class_fixtures()
register('test', lambda *args: None)
cls.add_class_callback(partial(unregister, 'test'))
with tarfile.open(test_resource_path('example_data.tar.gz')) as tar:
tar.extractall(cls.tmpdir.path)
cls.expected_perf = dataframe_cache(
cls.tmpdir.getpath(
'example_data/expected_perf/%s' %
pd.__version__.replace('.', '-'),
),
serialization='pickle',
)
cls.no_benchmark_expected_perf = {
example_name: cls._no_benchmark_expectations_applied(
expected_perf.copy()
)
for example_name, expected_perf in cls.expected_perf.items()
}
@staticmethod
def _no_benchmark_expectations_applied(expected_perf):
# With no benchmark, expect zero results for these metrics:
expected_perf[['alpha', 'beta']] = None
for col in ['benchmark_period_return', 'benchmark_volatility']:
expected_perf.loc[
~pd.isnull(expected_perf[col]),
col,
] = 0.0
return expected_perf
@parameter_space(
example_name=sorted(EXAMPLE_MODULES),
benchmark_returns=[read_checked_in_benchmark_data(), None]
)
def test_example(self, example_name, benchmark_returns):
actual_perf = examples.run_example(
EXAMPLE_MODULES,
example_name,
# This should match the invocation in
# zipline/tests/resources/rebuild_example_data
environ={
'ZIPLINE_ROOT': self.tmpdir.getpath('example_data/root'),
},
benchmark_returns=benchmark_returns,
)
if benchmark_returns is not None:
expected_perf = self.expected_perf[example_name]
else:
expected_perf = self.no_benchmark_expected_perf[example_name]
# Exclude positions column as the positions do not always have the
# same order
columns = [column for column in examples._cols_to_check
if column != 'positions']
assert_equal(
actual_perf[columns],
expected_perf[columns],
# There is a difference in the datetime columns in pandas
# 0.16 and 0.17 because in 16 they are object and in 17 they are
# datetime[ns, UTC]. We will just ignore the dtypes for now.
check_dtype=False,
)
# Sort positions by SID before comparing
assert_equal(
expected_perf['positions'].apply(sorted, key=itemgetter('sid')),
actual_perf['positions'].apply(sorted, key=itemgetter('sid')),
)