forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess-stats-dir.py
executable file
·482 lines (431 loc) · 17.8 KB
/
process-stats-dir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/python
#
# ==-- process-stats-dir - summarize one or more Swift -stats-output-dirs --==#
#
# This source file is part of the Swift.org open source project
#
# Copyright (c) 2014-2017 Apple Inc. and the Swift project authors
# Licensed under Apache License v2.0 with Runtime Library Exception
#
# See https://swift.org/LICENSE.txt for license information
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
#
# ==------------------------------------------------------------------------==#
#
# This file processes the contents of one or more directories generated by
# `swiftc -stats-output-dir` and emits summary data, traces etc. for analysis.
import argparse
import csv
import datetime
import json
import os
import platform
import random
import re
import sys
import time
import urllib
import urllib2
class JobStats:
def __init__(self, jobkind, jobid, module, start_usec, dur_usec,
jobargs, stats):
self.jobkind = jobkind
self.jobid = jobid
self.module = module
self.start_usec = start_usec
self.dur_usec = dur_usec
self.jobargs = jobargs
self.stats = stats
def is_driver_job(self):
return self.jobkind == 'driver'
def is_frontend_job(self):
return self.jobkind == 'frontend'
def driver_jobs_ran(self):
assert(self.is_driver_job())
return self.stats.get("Driver.NumDriverJobsRun", 0)
def driver_jobs_skipped(self):
assert(self.is_driver_job())
return self.stats.get("Driver.NumDriverJobsSkipped", 0)
def driver_jobs_total(self):
assert(self.is_driver_job())
return self.driver_jobs_ran() + self.driver_jobs_skipped()
def merged_with(self, other):
merged_stats = {}
for k, v in self.stats.items() + other.stats.items():
merged_stats[k] = v + merged_stats.get(k, 0.0)
merged_kind = self.jobkind
if other.jobkind != merged_kind:
merged_kind = "<merged>"
merged_module = self.module
if other.module != merged_module:
merged_module = "<merged>"
merged_start = min(self.start_usec, other.start_usec)
merged_end = max(self.start_usec + self.dur_usec,
other.start_usec + other.dur_usec)
merged_dur = merged_end - merged_start
return JobStats(merged_kind, random.randint(0, 1000000000),
merged_module, merged_start, merged_dur,
self.jobargs + other.jobargs, merged_stats)
def incrementality_percentage(self):
assert(self.is_driver_job())
ran = self.driver_jobs_ran()
total = self.driver_jobs_total()
return round((float(ran) / float(total)) * 100.0, 2)
# Return a JSON-formattable object of the form preferred by google chrome's
# 'catapult' trace-viewer.
def to_catapult_trace_obj(self):
return {"name": self.module,
"cat": self.jobkind,
"ph": "X", # "X" == "complete event"
"pid": self.jobid,
"tid": 1,
"ts": self.start_usec,
"dur": self.dur_usec,
"args": self.jobargs}
def start_timestr(self):
t = datetime.datetime.fromtimestamp(self.start_usec / 1000000.0)
return t.strftime("%Y-%m-%d %H:%M:%S")
def end_timestr(self):
t = datetime.datetime.fromtimestamp((self.start_usec +
self.dur_usec) / 1000000.0)
return t.strftime("%Y-%m-%d %H:%M:%S")
def pick_lnt_metric_suffix(self, metric_name):
if "BytesOutput" in metric_name:
return "code_size"
if "RSS" in metric_name or "BytesAllocated" in metric_name:
return "mem"
return "compile"
# Return a JSON-formattable object of the form preferred by LNT's
# 'submit' format.
def to_lnt_test_obj(self, args):
run_info = {
"run_order": str(args.lnt_order),
"tag": str(args.lnt_tag),
}
run_info.update(dict(args.lnt_run_info))
stats = self.stats
return {
"Machine":
{
"Name": args.lnt_machine,
"Info": dict(args.lnt_machine_info)
},
"Run":
{
"Start Time": self.start_timestr(),
"End Time": self.end_timestr(),
"Info": run_info
},
"Tests":
[
{
"Data": [v],
"Info": {},
"Name": "%s.%s.%s.%s" % (args.lnt_tag, self.module,
k, self.pick_lnt_metric_suffix(k))
}
for (k, v) in stats.items()
]
}
# Return an array of JobStats objects
def load_stats_dir(path):
jobstats = []
auxpat = (r"(?P<module>[^-]+)-(?P<input>[^-]+)-(?P<triple>[^-]+)" +
r"-(?P<out>[^-]+)-(?P<opt>[^-]+)")
fpat = (r"^stats-(?P<start>\d+)-swift-(?P<kind>\w+)-" +
auxpat +
r"-(?P<pid>\d+)(-.*)?.json$")
for root, dirs, files in os.walk(path):
for f in files:
m = re.match(fpat, f)
if m:
# NB: "pid" in fpat is a random number, not unix pid.
mg = m.groupdict()
jobkind = mg['kind']
jobid = int(mg['pid'])
start_usec = int(mg['start'])
module = mg["module"]
jobargs = [mg["input"], mg["triple"], mg["out"], mg["opt"]]
j = json.load(open(os.path.join(root, f)))
dur_usec = 1
patstr = (r"time\.swift-" + jobkind + r"\." + auxpat +
r"\.wall$")
pat = re.compile(patstr)
stats = dict()
for (k, v) in j.items():
if k.startswith("time."):
v = int(1000000.0 * float(v))
stats[k] = v
tm = re.match(pat, k)
if tm:
dur_usec = v
e = JobStats(jobkind=jobkind, jobid=jobid,
module=module, start_usec=start_usec,
dur_usec=dur_usec, jobargs=jobargs,
stats=stats)
jobstats.append(e)
return jobstats
# Passed args with 2-element remainder ["old", "new"], return a list of tuples
# of the form [(name, (oldstats, newstats))] where each name is a common subdir
# of each of "old" and "new", and the stats are those found in the respective
# dirs.
def load_paired_stats_dirs(args):
assert(len(args.remainder) == 2)
paired_stats = []
(old, new) = args.remainder
for p in sorted(os.listdir(old)):
full_old = os.path.join(old, p)
full_new = os.path.join(new, p)
if not (os.path.exists(full_old) and os.path.isdir(full_old) and
os.path.exists(full_new) and os.path.isdir(full_new)):
continue
old_stats = load_stats_dir(full_old)
new_stats = load_stats_dir(full_new)
if len(old_stats) == 0 or len(new_stats) == 0:
continue
paired_stats.append((p, (old_stats, new_stats)))
return paired_stats
def write_catapult_trace(args):
allstats = []
for path in args.remainder:
allstats += load_stats_dir(path)
json.dump([s.to_catapult_trace_obj() for s in allstats], args.output)
def write_lnt_values(args):
for d in args.remainder:
stats = load_stats_dir(d)
merged = merge_all_jobstats(stats)
j = merged.to_lnt_test_obj(args)
if args.lnt_submit is None:
json.dump(j, args.output, indent=4)
else:
url = args.lnt_submit
print "\nsubmitting to LNT server: " + url
json_report = {'input_data': json.dumps(j), 'commit': '1'}
data = urllib.urlencode(json_report)
response_str = urllib2.urlopen(urllib2.Request(url, data))
response = json.loads(response_str.read())
print "### response:"
print response
if 'success' in response:
print "server response:\tSuccess"
else:
print "server response:\tError"
print "error:\t", response['error']
sys.exit(1)
def merge_all_jobstats(jobstats):
m = None
for j in jobstats:
if m is None:
m = j
else:
m = m.merged_with(j)
return m
def show_paired_incrementality(args):
fieldnames = ["old_pct", "old_skip",
"new_pct", "new_skip",
"delta_pct", "delta_skip",
"name"]
out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
for (name, (oldstats, newstats)) in load_paired_stats_dirs(args):
olddriver = merge_all_jobstats([x for x in oldstats
if x.is_driver_job()])
newdriver = merge_all_jobstats([x for x in newstats
if x.is_driver_job()])
if olddriver is None or newdriver is None:
continue
oldpct = olddriver.incrementality_percentage()
newpct = newdriver.incrementality_percentage()
deltapct = newpct - oldpct
oldskip = olddriver.driver_jobs_skipped()
newskip = newdriver.driver_jobs_skipped()
deltaskip = newskip - oldskip
out.writerow(dict(name=name,
old_pct=oldpct, old_skip=oldskip,
new_pct=newpct, new_skip=newskip,
delta_pct=deltapct, delta_skip=deltaskip))
def show_incrementality(args):
fieldnames = ["incrementality", "name"]
out = csv.DictWriter(args.output, fieldnames, dialect='excel-tab')
out.writeheader()
for path in args.remainder:
stats = load_stats_dir(path)
for s in stats:
if s.is_driver_job():
pct = s.incrementality_percentage()
out.writerow(dict(name=os.path.basename(path),
incrementality=pct))
def diff_and_pct(old, new):
if old == 0:
if new == 0:
return (0, 0.0)
else:
return (new, 100.0)
delta = (new - old)
delta_pct = round((float(delta) / float(old)) * 100.0, 2)
return (delta, delta_pct)
def update_epoch_value(d, name, epoch, value):
changed = 0
if name in d:
(existing_epoch, existing_value) = d[name]
if existing_epoch > epoch:
print("note: keeping newer value %d from epoch %d for %s"
% (existing_value, existing_epoch, name))
epoch = existing_epoch
value = existing_value
elif existing_value == value:
epoch = existing_epoch
else:
(_, delta_pct) = diff_and_pct(existing_value, value)
print ("note: changing value %d -> %d (%.2f%%) for %s" %
(existing_value, value, delta_pct, name))
changed = 1
d[name] = (epoch, value)
return (epoch, value, changed)
def read_stats_dict_from_csv(f):
infieldnames = ["epoch", "name", "value"]
c = csv.DictReader(f, infieldnames,
dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
d = {}
for row in c:
epoch = int(row["epoch"])
name = row["name"]
value = int(row["value"])
update_epoch_value(d, name, epoch, value)
return d
# The idea here is that a "baseline" is a (tab-separated) CSV file full of
# the counters you want to track, each prefixed by an epoch timestamp of
# the last time the value was reset.
#
# When you set a fresh baseline, all stats in the provided stats dir are
# written to the baseline. When you set against an _existing_ baseline,
# only the counters mentioned in the existing baseline are updated, and
# only if their values differ.
#
# Finally, since it's a line-oriented CSV file, you can put:
#
# mybaseline.csv merge=union
#
# in your .gitattributes file, and forget about merge conflicts. The reader
# function above will take the later epoch anytime it detects duplicates,
# so union-merging is harmless. Duplicates will be eliminated whenever the
# next baseline-set is done.
def set_csv_baseline(args):
existing = None
if os.path.exists(args.set_csv_baseline):
with open(args.set_csv_baseline, "r") as f:
existing = read_stats_dict_from_csv(f)
print ("updating %d baseline entries in %s" %
(len(existing), args.set_csv_baseline))
else:
print "making new baseline " + args.set_csv_baseline
fieldnames = ["epoch", "name", "value"]
with open(args.set_csv_baseline, "wb") as f:
out = csv.DictWriter(f, fieldnames, dialect='excel-tab',
quoting=csv.QUOTE_NONNUMERIC)
m = merge_all_jobstats([s for d in args.remainder
for s in load_stats_dir(d)])
changed = 0
newepoch = int(time.time())
for name in sorted(m.stats.keys()):
epoch = newepoch
value = m.stats[name]
if existing is not None:
if name not in existing:
continue
(epoch, value, chg) = update_epoch_value(existing, name,
epoch, value)
changed += chg
out.writerow(dict(epoch=int(epoch),
name=name,
value=int(value)))
if existing is not None:
print "changed %d entries in baseline" % changed
return 0
def compare_to_csv_baseline(args):
old_stats = read_stats_dict_from_csv(args.compare_to_csv_baseline)
m = merge_all_jobstats([s for d in args.remainder
for s in load_stats_dir(d)])
new_stats = m.stats
regressions = 0
outfieldnames = ["old", "new", "delta_pct", "name"]
out = csv.DictWriter(args.output, outfieldnames, dialect='excel-tab')
out.writeheader()
for stat_name in sorted(old_stats.keys()):
(_, old) = old_stats[stat_name]
new = new_stats.get(stat_name, 0)
(delta, delta_pct) = diff_and_pct(old, new)
if (stat_name.startswith("time.") and
abs(delta) < args.delta_usec_thresh):
continue
if abs(delta_pct) < args.delta_pct_thresh:
continue
out.writerow(dict(name=stat_name,
old=int(old), new=int(new),
delta_pct=delta_pct))
if delta > 0:
regressions += 1
return regressions
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true",
help="Report activity verbosely")
parser.add_argument("--output", default="-",
type=argparse.FileType('wb', 0),
help="Write output to file")
parser.add_argument("--paired", action="store_true",
help="Process two dirs-of-stats-dirs, pairwise")
parser.add_argument("--delta-pct-thresh", type=float, default=0.01,
help="Percentage change required to report")
parser.add_argument("--delta-usec-thresh", type=int, default=100000,
help="Absolute delta on times required to report")
parser.add_argument("--lnt-machine", type=str, default=platform.node(),
help="Machine name for LNT submission")
parser.add_argument("--lnt-run-info", action='append', default=[],
type=lambda kv: kv.split("="),
help="Extra key=value pairs for LNT run-info")
parser.add_argument("--lnt-machine-info", action='append', default=[],
type=lambda kv: kv.split("="),
help="Extra key=value pairs for LNT machine-info")
parser.add_argument("--lnt-order", type=str,
default=str(int(time.time())),
help="Order for LNT submission")
parser.add_argument("--lnt-tag", type=str, default="swift-compile",
help="Tag for LNT submission")
parser.add_argument("--lnt-submit", type=str, default=None,
help="URL to submit LNT data to (rather than print)")
modes = parser.add_mutually_exclusive_group(required=True)
modes.add_argument("--catapult", action="store_true",
help="emit a 'catapult'-compatible trace of events")
modes.add_argument("--incrementality", action="store_true",
help="summarize the 'incrementality' of a build")
modes.add_argument("--set-csv-baseline", type=str, default=None,
help="Merge stats from a stats-dir into a CSV baseline")
modes.add_argument("--compare-to-csv-baseline",
type=argparse.FileType('rb', 0), default=None,
metavar="BASELINE.csv",
help="Compare stats dir to named CSV baseline")
modes.add_argument("--lnt", action="store_true",
help="Emit an LNT-compatible test summary")
parser.add_argument('remainder', nargs=argparse.REMAINDER,
help="stats-dirs to process")
args = parser.parse_args()
if len(args.remainder) == 0:
parser.print_help()
return 1
if args.catapult:
write_catapult_trace(args)
elif args.set_csv_baseline is not None:
return set_csv_baseline(args)
elif args.compare_to_csv_baseline is not None:
return compare_to_csv_baseline(args)
elif args.incrementality:
if args.paired:
show_paired_incrementality(args)
else:
show_incrementality(args)
elif args.lnt:
write_lnt_values(args)
return None
sys.exit(main())