forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscale-test
executable file
·369 lines (320 loc) · 12 KB
/
scale-test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/env python
#
# -*- python -*-
#
# Runs a .gyb scale-testing file repeatedly through swiftc while varying a
# scaling variable 'N', collects json stats from the compiler, transforms the
# problem to log-space and runs a linear regression to estimate the exponent on
# the stat's growth curve relative to N.
#
# The estimate will be more accurate as N increases, so if you get a
# not-terribly-convincing estimate, try increasing --begin and --end to larger
# values.
#
from __future__ import print_function
import argparse
import json
import math
import os
import os.path
import shutil
import subprocess
import sys
import tempfile
import gyb
def find_which(p):
for d in os.environ["PATH"].split(os.pathsep):
full = os.path.join(d, p)
if os.path.isfile(full) and os.access(full, os.X_OK):
return full
return p
# Evidently the debug-symbol reader in dtrace is sufficiently slow and/or buggy
# that attempting to inject probes into a binary w/ debuginfo is asking for a
# failed run (possibly racing with probe insertion, or probing the stabs
# entries, see rdar://problem/7037927 or rdar://problem/11490861 respectively),
# so we sniff the presence of debug symbols here.
def has_debuginfo(swiftc):
swiftc = find_which(swiftc)
for line in subprocess.check_output(
["dwarfdump", "--file-stats", swiftc]).splitlines():
if '%' not in line:
continue
fields = line.split()
if fields[8] != '0.00%' or fields[10] != '0.00%':
return True
return False
def write_input_file(args, ast, d, n):
fname = "in%d.swift" % n
pathname = os.path.join(d, fname)
with open(pathname, 'w+') as f:
f.write(gyb.execute_template(ast, '', N=n))
return fname
def run_once_with_primary(args, ast, rng, primary_idx):
r = {}
try:
if args.tmpdir is not None and not os.path.exists(args.tmpdir):
os.makedirs(args.tmpdir, 0700)
d = tempfile.mkdtemp(dir=args.tmpdir)
inputs = [write_input_file(args, ast, d, i) for i in rng]
primary = inputs[primary_idx]
ofile = "out.o"
mode = "-c"
if args.typecheck:
mode = "-typecheck"
focus = ["-primary-file", primary]
if args.whole_module_optimization:
focus = ['-whole-module-optimization']
opts = []
if args.optimize:
opts = ['-O']
elif args.optimize_none:
opts = ['-Onone']
elif args.optimize_unchecked:
opts = ['-Ounchecked']
extra = args.Xfrontend[:]
if args.debuginfo:
extra.append('-g')
command = [args.swiftc_binary,
"-frontend", mode,
"-o", ofile] + opts + focus + extra + inputs
if args.trace:
print("running: " + " ".join(command))
if args.dtrace:
trace = "trace.txt"
script = ("pid$target:swiftc:*%s*:entry { @[probefunc] = count() }"
% args.select)
try:
subprocess.check_call(
["sudo", "dtrace", "-q",
"-o", trace,
"-b", "256",
"-n", script,
"-c", " ".join(command)], cwd=d)
except subprocess.CalledProcessError as e:
if e.returncode != args.expected_exit_code:
raise
r = {fields[0]: int(fields[1]) for fields in
[line.split() for line in open(os.path.join(d, trace))]
if len(fields) == 2}
else:
if args.debug:
command = ["lldb", "--"] + command
stats = "stats.json"
argv = command + ["-Xllvm", "-stats",
"-Xllvm", "-stats-json",
"-Xllvm", "-info-output-file=" + stats]
try:
subprocess.check_call(argv, cwd=d)
except subprocess.CalledProcessError as e:
if e.returncode != args.expected_exit_code:
raise
with open(os.path.join(d, stats)) as f:
r = json.load(f)
finally:
shutil.rmtree(d)
return {k: v for (k, v) in r.items() if args.select in k}
def run_once(args, ast, rng):
if args.sum_multi:
cumulative = {}
for i in range(len(rng)):
tmp = run_once_with_primary(args, ast, rng, i)
for (k, v) in tmp.items():
if k in cumulative:
cumulative[k] += v
else:
cumulative[k] = v
return cumulative
else:
return run_once_with_primary(args, ast, rng, -1)
def run_many(args):
if args.dtrace and has_debuginfo(args.swiftc_binary):
print("")
print("**************************************************")
print("")
print("dtrace is unreliable on binaries w/ debug symbols")
print("please run 'strip -S %s'" % args.swiftc_binary)
print("or pass a different --swiftc-binary")
print("")
print("**************************************************")
print("")
exit(1)
ast = gyb.parse_template(args.file.name, args.file.read())
rng = range(args.begin, args.end, args.step)
if args.multi_file or args.sum_multi:
return (rng, [run_once(args, ast, range(i)) for i in rng])
else:
return (rng, [run_once(args, ast, [r]) for r in rng])
def is_small(x):
return abs(x) < 1e-9
def linear_regression(x, y):
# By the book: https://en.wikipedia.org/wiki/Simple_linear_regression
n = float(len(x))
assert n == len(y)
if n == 0:
return 0, 0
sum_x = sum(x)
sum_y = sum(y)
sum_prod = sum(a * b for a, b in zip(x, y))
sum_x_sq = sum(a ** 2 for a in x)
sum_y_sq = sum(b ** 2 for b in y)
mean_x = sum_x / n
mean_y = sum_y / n
mean_prod = sum_prod / n
mean_x_sq = sum_x_sq / n
mean_y_sq = sum_y_sq / n
covar_xy = mean_prod - mean_x * mean_y
var_x = mean_x_sq - mean_x**2
var_y = mean_y_sq - mean_y**2
slope = covar_xy / var_x
inter = mean_y - slope * mean_x
# Compute the correlation coefficient aka r^2, to compare goodness-of-fit.
if is_small(var_y):
# all of the outputs are the same, so this is a perfect fit
assert is_small(covar_xy)
cor_coeff_sq = 1.0
elif is_small(var_x):
# all of the inputs are the same, and the outputs are different, so
# this is a completely imperfect fit
assert is_small(covar_xy)
cor_coeff_sq = 0.0
else:
cor_coeff_sq = covar_xy**2 / (var_x * var_y)
return slope, inter, cor_coeff_sq
# Y = a * X^b, returns a, b, R^2
def fit_polynomial_model(x, y):
# transform into linear regression via log(Y) = b*log(X) + log(a)
log_x = [math.log(val) for val in x]
log_y = [math.log(val) for val in y]
b, log_a, r2 = linear_regression(log_x, log_y)
return b, math.exp(log_a), r2
# Y = a * b^X, returns a, b, R^2
def fit_exponential_model(x, y):
# transform into linear regression via log(Y) = log(b) * X + log(a)
log_y = [math.log(val) for val in y]
log_b, log_a, r2 = linear_regression(x, log_y)
return math.exp(log_b), math.exp(log_a), r2
def report(args, rng, runs):
bad = False
keys = set.intersection(*[set(j.keys()) for j in runs])
if len(keys) == 0:
print("No data found")
if len(args.select) != 0:
"(perhaps try a different --select?)"
return True
rows = []
for k in keys:
vals = [r[k] for r in runs]
bounded = [max(v, 1) for v in vals]
p_b, p_a, p_r2 = fit_polynomial_model(rng, bounded)
e_b, e_a, e_r2 = fit_exponential_model(rng, bounded)
if p_r2 >= e_r2:
# polynomial is best
p_b = 0 if is_small(p_b) else p_b
rows.append((False, p_b, k, vals))
else:
# exponential is best
rows.append((True, e_b, k, vals))
# Exponential fits always go after polynomial fits.
rows.sort()
for (is_exp, b, k, vals) in rows:
# same threshold for both the polynomial exponent or the exponential
# base.
if is_exp:
this_is_bad = b >= args.exponential_threshold
formatted = '%1.1f^n' % b
else:
this_is_bad = b >= args.polynomial_threshold
formatted = 'n^%1.1f' % b
if this_is_bad:
bad = True
if not args.quiet or this_is_bad:
print("O(%s) : %s" % (formatted, k))
if args.values:
print(" = ", vals)
return bad
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'file', type=argparse.FileType(),
help='Path to GYB template file (defaults to stdin)', nargs='?',
default=sys.stdin)
parser.add_argument(
'--values', action='store_true',
default=False, help='print stat values')
parser.add_argument(
'--trace', action='store_true',
default=False, help='trace compiler invocations')
parser.add_argument(
'--quiet', action='store_true',
default=False, help='only print superlinear stats')
parser.add_argument(
'--polynomial-threshold', type=float,
default=1.2,
help='minimum exponent for polynomial fit to consider "bad scaling"')
parser.add_argument(
'--exponential-threshold', type=float,
default=1.2,
help='minimum base for exponential fit to consider "bad scaling"')
parser.add_argument(
'-typecheck', '--typecheck', action='store_true',
default=False, help='only run compiler with -typecheck')
parser.add_argument(
'-g', '--debuginfo', action='store_true',
default=False, help='run compiler with -g')
parser.add_argument(
'-wmo', '--whole-module-optimization', action='store_true',
default=False, help='run compiler with -whole-module-optimization')
parser.add_argument(
'--dtrace', action='store_true',
default=False, help='use dtrace to sample all functions')
parser.add_argument(
'-Xfrontend', action='append',
default=[], help='pass additional args to frontend jobs')
parser.add_argument(
'--begin', type=int,
default=10, help='first value for N')
parser.add_argument(
'--end', type=int,
default=100, help='last value for N')
parser.add_argument(
'--step', type=int,
default=10, help='step value for N')
parser.add_argument(
'--swiftc-binary',
default="swiftc", help='swift binary to execute')
parser.add_argument(
'--tmpdir', type=str,
default=None, help='directory to create tempfiles in')
parser.add_argument(
'--select',
default="", help='substring of counters/symbols to limit attention to')
parser.add_argument(
'--debug', action='store_true',
default=False, help='invoke lldb on each scale test')
parser.add_argument(
'--expected-exit-code', type=int, default=0,
help='exit code expected from the compiler invocation')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'-O', '--optimize', action='store_true',
default=False, help='run compiler with -O')
group.add_argument(
'-Onone', '--optimize-none', action='store_true',
default=False, help='run compiler with -Onone')
group.add_argument(
'-Ounchecked', '--optimize-unchecked', action='store_true',
default=False, help='run compiler with -Ounchecked')
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--multi-file', action='store_true',
default=False, help='vary number of input files as well')
group.add_argument(
'--sum-multi', action='store_true',
default=False, help='simulate a multi-primary run and sum stats')
args = parser.parse_args(sys.argv[1:])
(rng, runs) = run_many(args)
if report(args, rng, runs):
exit(1)
exit(0)
if __name__ == '__main__':
main()