-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathSecureRandom.cpp
174 lines (132 loc) · 3.78 KB
/
SecureRandom.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// ///////////////////////////////////////////////////////////////// //
// *C++ 11 BigInteger Library
// *Copyright(c) 2018 Mbadiwe Nnaemeka Ronald
// *Github Repository <https://github.com/ron4fun>
// *Distributed under the MIT software license, see the accompanying file LICENSE
// *or visit http ://www.opensource.org/licenses/mit-license.php.
// *Acknowledgements:
// ** //
// *Thanks to Ugochukwu Mmaduekwe (https://github.com/Xor-el) for his creative
// *development of this library in Pascal/Delphi
// ////////////////////////////////////////////////////// ///////////////
#include "SecureRandom.h"
#include "../Utils/HlpBits.h"
#include "../Rng/CryptoApiRandomGenerator.h"
#include <chrono>
using namespace std::chrono;
int64_t SecureRandom::Counter = 0;
double SecureRandom::DoubleScale = 0;
IRandomGenerator SecureRandom::generator = nullptr;
ISecureRandom SecureRandom::master = nullptr;
vector<uint8_t> SecureRandom::GenerateSeed(const int32_t length)
{
return GetNextBytes(master, length);
}
void SecureRandom::SetSeed(vector<uint8_t> &seed)
{
generator.get()->AddSeedMaterial(seed);
}
void SecureRandom::SetSeed(const int64_t seed)
{
generator.get()->AddSeedMaterial(seed);
}
void SecureRandom::NextBytes(vector<uint8_t> &buf)
{
generator.get()->NextBytes(buf);
}
void SecureRandom::NextBytes(vector<uint8_t> &buf, const int32_t off, const int32_t len)
{
generator.get()->NextBytes(buf, off, len);
}
int32_t SecureRandom::NextInt32()
{
uint32_t tempRes;
vector<uint8_t> bytes(4);
NextBytes(bytes);
tempRes = bytes[0];
tempRes = tempRes << 8;
tempRes = tempRes | bytes[1];
tempRes = tempRes << 8;
tempRes = tempRes | bytes[2];
tempRes = tempRes << 8;
tempRes = tempRes | bytes[3];
return int32_t(tempRes);
}
int64_t SecureRandom::NextInt64()
{
return (int64_t(uint32_t(NextInt32())) << 32) | (int64_t(uint32_t(NextInt32())));
}
double SecureRandom::NextDouble()
{
return uint64_t(NextInt64()) / DoubleScale;
}
int64_t SecureRandom::NextCounterValue()
{
uint32_t LCounter;
LCounter = uint32_t(Counter);
int64_t result = LCounter; // InterLockedIncrement(LCounter);
Counter = int64_t(LCounter);
return result;
}
int32_t SecureRandom::Next()
{
return NextInt32() & INT32_MAX;
}
int32_t SecureRandom::Next(const int32_t maxValue)
{
int32_t bits;
if (maxValue < 2)
{
if (maxValue < 0)
throw out_of_range(CannotBeNegative);
return 0;
}
// Test whether maxValue is a power of 2
if ((maxValue & (maxValue - 1)) == 0)
{
bits = NextInt32() & INT32_MAX;
return int32_t(Bits::Asr64((int64_t(bits) * maxValue), 31));
}
int32_t result;
do
{
bits = NextInt32() & INT32_MAX;
result = bits % maxValue;
// Ignore results near overflow
} while (((bits - (result + (maxValue - 1))) < 0));
return result;
}
int32_t SecureRandom::Next(const int32_t minValue, const int32_t maxValue)
{
int32_t diff, i;
if (maxValue <= minValue)
{
if (maxValue == minValue) return minValue;
throw invalid_argument(InvalidMaxValue);
}
diff = maxValue - minValue;
if (diff > 0) return minValue + Next(diff);
while (true)
{
i = NextInt32();
if ((i >= minValue) && (i < maxValue)) return i;
}
return 0; // to make FixInsight Happy :)
}
vector<uint8_t> SecureRandom::GetNextBytes(ISecureRandom secureRandom, const int32_t length)
{
vector<uint8_t> result(length);
secureRandom.get()->NextBytes(result);
return result;
}
void SecureRandom::Boot()
{
auto now = high_resolution_clock::now();
nanoseconds nn = duration_cast<nanoseconds>(now.time_since_epoch());
Counter = nn.count();
if (master == nullptr)
{
master = make_shared<SecureRandom>(make_shared<CryptoApiRandomGenerator>());
}
DoubleScale = pow(2.0, 64.0);
}