-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmodule_3.html
242 lines (222 loc) · 21.6 KB
/
module_3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Module 3: The Essentials of NumPy — Python Like You Mean It</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/my_theme.css" type="text/css" />
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script async="async" src="https://www.googletagmanager.com/gtag/js?id=UA-115029372-1"></script>
<script src="_static/gtag.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="Introducing the ND-array" href="Module3_IntroducingNumpy/IntroducingTheNDarray.html" />
<link rel="prev" title="Encode as String" href="Module2_EssentialsOfPython/Problems/EncodeAsString.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home"> Python Like You Mean It
</a>
<div class="version">
1.4
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Table of Contents:</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="intro.html">Python Like You Mean It</a></li>
<li class="toctree-l1"><a class="reference internal" href="module_1.html">Module 1: Getting Started with Python</a></li>
<li class="toctree-l1"><a class="reference internal" href="module_2.html">Module 2: The Essentials of Python</a></li>
<li class="toctree-l1"><a class="reference internal" href="module_2_problems.html">Module 2: Problems</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Module 3: The Essentials of NumPy</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/IntroducingTheNDarray.html">Introducing the ND-array</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html">Accessing Data Along Multiple Dimensions in an Array</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicArrayAttributes.html">Basic Array Attributes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html">Functions for Creating NumPy Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/ArrayTraversal.html">Iterating Over Arrays & Array-Traversal Order</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html">“Vectorized” Operations: Optimized Computations on NumPy Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html">Array Broadcasting</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html">Introducing Basic and Advanced Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html">Advanced Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html">Automatic Differentiation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="module_3_problems.html">Module 3: Problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="module_4.html">Module 4: Object Oriented Programming</a></li>
<li class="toctree-l1"><a class="reference internal" href="module_5.html">Module 5: Odds and Ends</a></li>
<li class="toctree-l1"><a class="reference internal" href="changes.html">Changelog</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Python Like You Mean It</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home"></a> »</li>
<li>Module 3: The Essentials of NumPy</li>
<li class="wy-breadcrumbs-aside">
<a href="_sources/module_3.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<style>
/* CSS overrides for sphinx_rtd_theme */
/* 24px margin */
.nbinput.nblast.container,
.nboutput.nblast.container {
margin-bottom: 19px; /* padding has already 5px */
}
/* ... except between code cells! */
.nblast.container + .nbinput.container {
margin-top: -19px;
}
.admonition > p:before {
margin-right: 4px; /* make room for the exclamation icon */
}
/* Fix math alignment, see https://github.com/rtfd/sphinx_rtd_theme/pull/686 */
.math {
text-align: unset;
}
</style>
<section id="module-3-the-essentials-of-numpy">
<h1>Module 3: The Essentials of NumPy<a class="headerlink" href="#module-3-the-essentials-of-numpy" title="Permalink to this headline"></a></h1>
<p>NumPy is the reason why Python stands among the ranks of R, Matlab, and Julia, as one of the most popular languages for doing STEM-related computing. It is a third-party library (i.e. it is not part of Python’s standard library) that facilitates numerical computing in Python by providing users with a versatile N-dimensional array object for storing data, and powerful mathematical functions for operating on those arrays of numbers. NumPy implements its features in ways that are highly optimized, via a process known as vectorization, that enables a degree of computational efficiency that is otherwise unachievable by the Python language.</p>
<p>The impact that NumPy has had on the landscape of numerical computing in Python is hard to overstate. Whether you are plotting data in matplotlib, analyzing tabular data via <a class="reference external" href="https://pandas.pydata.org">pandas</a> and <a class="reference external" href="https://xarray.pydata.org/en/stable">xarray</a>, using <a class="reference external" href="https://opencv.org">OpenCV</a> for image and video processing, doing astrophysics research with the help of <a class="reference external" href="www.astropy.org">astropy</a>, or trying out machine learning with <a class="reference external" href="https://scikit-learn.org/stable/index.html">Scikit-Learn</a> and <a class="reference external" href="https://mygrad.readthedocs.io">MyGrad</a>, you are using Python libraries that bare the indelible mark of NumPy. At their core, each of these libraries depend on NumPy’s N-dimensional array and its efficient vectorization capabilities. NumPy also fundamentally impacts the designs of these libraries and the way that they interface with their users. Thus, one cannot leverage these tools effectively, and cannot do STEM work in Python in general, without having a solid foundation in NumPy.</p>
<p>This module presents to us the essentials of NumPy. We will first define what the term dimensionality means and will develop an intuition for what zero, one, two, and N-dimensional arrays are, and why they are invaluable for data science applications. Next, we will discuss the ambiguities of array traversal-order and NumPy’s default use of row-major ordering. We will then arrive at the critical topic of vectorization, which prescribes the ways in which NumPy dispatches mathematical operations over arrays of numbers. This will also give us keen insight into how NumPy achieves its tremendous computational efficiency. Finally, we will dive into some of NumPy’s more advanced features. These include its rules for broadcasting mathematical operations between arrays of different shapes, as well as its mechanisms for accessing and updating an array’s contents via basic and advanced indexing. Armed with these techniques, we will be able to write concise and powerful numerical code using NumPy and Python’s many other STEM libraries!</p>
<div class="toctree-wrapper compound">
<p class="caption" role="heading"><span class="caption-text">Contents:</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/IntroducingTheNDarray.html">Introducing the ND-array</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/IntroducingTheNDarray.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html">Accessing Data Along Multiple Dimensions in an Array</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#One-dimensional-Arrays">One-dimensional Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#Two-dimensional-Arrays">Two-dimensional Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#N-dimensional-Arrays">N-dimensional Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#Zero-dimensional-Arrays">Zero-dimensional Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#Manipulating-Arrays">Manipulating Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AccessingDataAlongMultipleDimensions.html#Reading-Comprehension-Solutions">Reading Comprehension Solutions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/BasicArrayAttributes.html">Basic Array Attributes</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicArrayAttributes.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html">Functions for Creating NumPy Arrays</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Creating-Arrays-from-Python-Sequences">Creating Arrays from Python Sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Creating-Constant-Arrays:-zeros-and-ones">Creating Constant Arrays: <code class="docutils literal notranslate"><span class="pre">zeros</span></code> and <code class="docutils literal notranslate"><span class="pre">ones</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Creating-Sequential-Arrays:-arange-and-linspace">Creating Sequential Arrays: <code class="docutils literal notranslate"><span class="pre">arange</span></code> and <code class="docutils literal notranslate"><span class="pre">linspace</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Creating-Arrays-Using-Random-Sampling">Creating Arrays Using Random Sampling</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Creating-an-Array-with-a-Specified-Data-Type">Creating an Array with a Specified Data Type</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Joining-Arrays-Together">Joining Arrays Together</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/FunctionsForCreatingNumpyArrays.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/ArrayTraversal.html">Iterating Over Arrays & Array-Traversal Order</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/ArrayTraversal.html#How-to-Traverse-an-Array:-Row-major-(C)-vs-Column-major-(F)-Traversal-Ordering">How to Traverse an Array: Row-major (C) vs Column-major (F) Traversal Ordering</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/ArrayTraversal.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html">“Vectorized” Operations: Optimized Computations on NumPy Arrays</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Basic-Mathematical-Operations-Using-Arrays">Basic Mathematical Operations Using Arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Vectorized-Operations">Vectorized Operations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#NumPy’s-Mathematical-Functions">NumPy’s Mathematical Functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Logical-Operations">Logical Operations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Linear-Algebra">Linear Algebra</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Conclusion">Conclusion</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/VectorizedOperations.html#Reading-Comprehension-Solutions">Reading Comprehension Solutions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html">Array Broadcasting</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#Rules-of-Broadcasting">Rules of Broadcasting</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#A-Simple-Application-of-Array-Broadcasting">A Simple Application of Array Broadcasting</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#Size-1-Axes-&-The-newaxis-Object">Size-1 Axes & The <code class="docutils literal notranslate"><span class="pre">newaxis</span></code> Object</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#An-Advanced-Application-of-Broadcasting:-Pairwise-Distances">An Advanced Application of Broadcasting: Pairwise Distances</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/Broadcasting.html#Reading-Comprehension-Solutions">Reading Comprehension Solutions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html">Introducing Basic and Advanced Indexing</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html#Basic-Indexing">Basic Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html#Producing-a-View-of-an-Array">Producing a View of an Array</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html#Augmenting-the-Underlying-Data-of-an-Array">Augmenting the Underlying Data of an Array</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/BasicIndexing.html#Reading-Comprehension-Solutions">Reading Comprehension Solutions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html">Advanced Indexing</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#Integer-Array-Indexing">Integer Array Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#Boolean-Array-Indexing">Boolean-Array Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#In-Place-&-Augmented-Assignments-via-Advanced-Indexing">In-Place & Augmented Assignments via Advanced Indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#Combining-Basic-and-Advanced-Indexing-Schemes">Combining Basic and Advanced Indexing Schemes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#Links-to-Official-Documentation">Links to Official Documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AdvancedIndexing.html#Reading-Comprehension-Solutions">Reading Comprehension Solutions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html">Automatic Differentiation</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Introduction-to-MyGrad">Introduction to MyGrad</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Vectorized-Auto-Differentiation">Vectorized Auto-Differentiation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Visualizing-the-Derivative">Visualizing the Derivative</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Seek-and-Derive">Seek and Derive</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Applying-Automatic-Differentiation:-Solving-Optimization-Problems">Applying Automatic Differentiation: Solving Optimization Problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="Module3_IntroducingNumpy/AutoDiff.html#Reading-Comprehension-Exercise-Solutions">Reading Comprehension Exercise Solutions</a></li>
</ul>
</li>
</ul>
</div>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="Module2_EssentialsOfPython/Problems/EncodeAsString.html" class="btn btn-neutral float-left" title="Encode as String" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="Module3_IntroducingNumpy/IntroducingTheNDarray.html" class="btn btn-neutral float-right" title="Introducing the ND-array" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>© Copyright 2021, Ryan Soklaski.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>