Skip to content

Library for generating vector embeddings, reranking in Rust

License

Notifications You must be signed in to change notification settings

triandco/fastembed-rs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Rust implementation of @qdrant/fastembed

Crates.io MIT Licensed Semantic release

πŸ• Features

The default model is Flag Embedding, which is top of the MTEB leaderboard.

πŸ” Not looking for Rust?

πŸ€– Models

Text Embedding

Sparse Text Embedding

Reranking

πŸš€ Installation

Run the following command in your project directory:

cargo add fastembed

Or add the following line to your Cargo.toml:

[dependencies]
fastembed = "3"

πŸ“– Usage

Generating Text Embeddings

use fastembed::{TextEmbedding, InitOptions, EmbeddingModel};

// With default InitOptions
let model = TextEmbedding::try_new(Default::default())?;

// With custom InitOptions
let model = TextEmbedding::try_new(InitOptions {
    model_name: EmbeddingModel::AllMiniLML6V2,
    show_download_progress: true,
    ..Default::default()
})?;

let documents = vec![
    "passage: Hello, World!",
    "query: Hello, World!",
    "passage: This is an example passage.",
    // You can leave out the prefix but it's recommended
    "fastembed-rs is licensed under Apache  2.0"
    ];

 // Generate embeddings with the default batch size, 256
 let embeddings = model.embed(documents, None)?;

 println!("Embeddings length: {}", embeddings.len()); // -> Embeddings length: 4
 println!("Embedding dimension: {}", embeddings[0].len()); // -> Embedding dimension: 384

Candidates Reranking

use fastembed::{TextRerank, RerankInitOptions, RerankerModel};

let model = TextRerank::try_new(RerankInitOptions {
    model_name: RerankerModel::BGERerankerBase,
    show_download_progress: true,
    ..Default::default()
})
.unwrap();

let documents = vec![
    "hi",
    "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear, is a bear species endemic to China.",
    "panda is animal",
    "i dont know",
    "kind of mammal",
];

// Rerank with the default batch size
let results = model.rerank("what is panda?", documents, true, None);
println!("Rerank result: {:?}", results);

Alternatively, raw .onnx files can be loaded through the UserDefinedEmbeddingModel struct (for "bring your own" text embedding models) using TextEmbedding::try_new_from_user_defined(...). Similarly, "bring your own" reranking models can be loaded using the UserDefinedRerankingModel struct and TextRerank::try_new_from_user_defined(...). For example:

macro_rules! local_model {
    ($folder:literal) => {
        UserDefinedEmbeddingModel {
            onnx_file: include_bytes!(concat!($folder, "/model.onnx")).to_vec(),
            tokenizer_files: TokenizerFiles {
                tokenizer_file: include_bytes!(concat!($folder, "/tokenizer.json")).to_vec(),
                config_file: include_bytes!(concat!($folder, "/config.json")).to_vec(),
                special_tokens_map_file: include_bytes!(concat!($folder, "/special_tokens_map.json")).to_vec(),
                tokenizer_config_file: include_bytes!(concat!($folder, "/tokenizer_config.json")).to_vec(),
            },
        }
    };
}

let user_def_model_data = local_model!("path/to/model");
let user_def_model = TextEmbedding::try_new_from_user_defined(user_def_model, Default::default()).unwrap();

πŸš’ Under the hood

Why fast?

It's important we justify the "fast" in FastEmbed. FastEmbed is fast because:

  1. Quantized model weights
  2. ONNX Runtime which allows for inference on CPU, GPU, and other dedicated runtimes

Why light?

  1. No hidden dependencies via Huggingface Transformers

Why accurate?

  1. Better than OpenAI Ada-002
  2. Top of the Embedding leaderboards e.g. MTEB

πŸ“„ LICENSE

Apache 2.0 Β© 2024

About

Library for generating vector embeddings, reranking in Rust

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 100.0%