forked from matplotlib/matplotlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_qhull_wrapper.cpp
302 lines (257 loc) · 9.28 KB
/
_qhull_wrapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
* Wrapper module for libqhull, providing Delaunay triangulation.
*
* This module's methods should not be accessed directly. To obtain a Delaunay
* triangulation, construct an instance of the matplotlib.tri.Triangulation
* class without specifying a triangles array.
*/
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#ifdef _MSC_VER
/* The Qhull header does not declare this as extern "C", but only MSVC seems to
* do name mangling on global variables. We thus need to declare this before
* the header so that it treats it correctly, and doesn't mangle the name. */
extern "C" {
extern const char qh_version[];
}
#endif
#include "libqhull_r/qhull_ra.h"
#include <cstdio>
#include <vector>
#ifndef MPL_DEVNULL
#error "MPL_DEVNULL must be defined as the OS-equivalent of /dev/null"
#endif
#define STRINGIFY(x) STR(x)
#define STR(x) #x
namespace py = pybind11;
using namespace pybind11::literals;
// Input numpy array class.
typedef py::array_t<double, py::array::c_style | py::array::forcecast> CoordArray;
// Output numpy array class.
typedef py::array_t<int> IndexArray;
static const char* qhull_error_msg[6] = {
"", /* 0 = qh_ERRnone */
"input inconsistency", /* 1 = qh_ERRinput */
"singular input data", /* 2 = qh_ERRsingular */
"precision error", /* 3 = qh_ERRprec */
"insufficient memory", /* 4 = qh_ERRmem */
"internal error"}; /* 5 = qh_ERRqhull */
/* Return the indices of the 3 vertices that comprise the specified facet (i.e.
* triangle). */
static void
get_facet_vertices(qhT* qh, const facetT* facet, int indices[3])
{
vertexT *vertex, **vertexp;
FOREACHvertex_(facet->vertices) {
*indices++ = qh_pointid(qh, vertex->point);
}
}
/* Return the indices of the 3 triangles that are neighbors of the specified
* facet (triangle). */
static void
get_facet_neighbours(const facetT* facet, std::vector<int>& tri_indices,
int indices[3])
{
facetT *neighbor, **neighborp;
FOREACHneighbor_(facet) {
*indices++ = (neighbor->upperdelaunay ? -1 : tri_indices[neighbor->id]);
}
}
/* Return true if the specified points arrays contain at least 3 unique points,
* or false otherwise. */
static bool
at_least_3_unique_points(py::ssize_t npoints, const double* x, const double* y)
{
const py::ssize_t unique1 = 0; /* First unique point has index 0. */
py::ssize_t unique2 = 0; /* Second unique point index is 0 until set. */
if (npoints < 3) {
return false;
}
for (py::ssize_t i = 1; i < npoints; ++i) {
if (unique2 == 0) {
/* Looking for second unique point. */
if (x[i] != x[unique1] || y[i] != y[unique1]) {
unique2 = i;
}
}
else {
/* Looking for third unique point. */
if ( (x[i] != x[unique1] || y[i] != y[unique1]) &&
(x[i] != x[unique2] || y[i] != y[unique2]) ) {
/* 3 unique points found, with indices 0, unique2 and i. */
return true;
}
}
}
/* Run out of points before 3 unique points found. */
return false;
}
/* Holds on to info from Qhull so that it can be destructed automatically. */
class QhullInfo {
public:
QhullInfo(FILE *error_file, qhT* qh) {
this->error_file = error_file;
this->qh = qh;
}
~QhullInfo() {
qh_freeqhull(this->qh, !qh_ALL);
int curlong, totlong; /* Memory remaining. */
qh_memfreeshort(this->qh, &curlong, &totlong);
if (curlong || totlong) {
PyErr_WarnEx(PyExc_RuntimeWarning,
"Qhull could not free all allocated memory", 1);
}
if (this->error_file != stderr) {
fclose(error_file);
}
}
private:
FILE* error_file;
qhT* qh;
};
/* Delaunay implementation method.
* If hide_qhull_errors is true then qhull error messages are discarded;
* if it is false then they are written to stderr. */
static py::tuple
delaunay_impl(py::ssize_t npoints, const double* x, const double* y,
bool hide_qhull_errors)
{
qhT qh_qh; /* qh variable type and name must be like */
qhT* qh = &qh_qh; /* this for Qhull macros to work correctly. */
facetT* facet;
int i, ntri, max_facet_id;
int exitcode; /* Value returned from qh_new_qhull(). */
const int ndim = 2;
double x_mean = 0.0;
double y_mean = 0.0;
QHULL_LIB_CHECK
/* Allocate points. */
std::vector<coordT> points(npoints * ndim);
/* Determine mean x, y coordinates. */
for (i = 0; i < npoints; ++i) {
x_mean += x[i];
y_mean += y[i];
}
x_mean /= npoints;
y_mean /= npoints;
/* Prepare points array to pass to qhull. */
for (i = 0; i < npoints; ++i) {
points[2*i ] = x[i] - x_mean;
points[2*i+1] = y[i] - y_mean;
}
/* qhull expects a FILE* to write errors to. */
FILE* error_file = NULL;
if (hide_qhull_errors) {
/* qhull errors are ignored by writing to OS-equivalent of /dev/null.
* Rather than have OS-specific code here, instead it is determined by
* meson.build and passed in via the macro MPL_DEVNULL. */
error_file = fopen(STRINGIFY(MPL_DEVNULL), "w");
if (error_file == NULL) {
throw std::runtime_error("Could not open devnull");
}
}
else {
/* qhull errors written to stderr. */
error_file = stderr;
}
/* Perform Delaunay triangulation. */
QhullInfo info(error_file, qh);
qh_zero(qh, error_file);
exitcode = qh_new_qhull(qh, ndim, (int)npoints, points.data(), False,
(char*)"qhull d Qt Qbb Qc Qz", NULL, error_file);
if (exitcode != qh_ERRnone) {
std::string msg =
py::str("Error in qhull Delaunay triangulation calculation: {} (exitcode={})")
.format(qhull_error_msg[exitcode], exitcode).cast<std::string>();
if (hide_qhull_errors) {
msg += "; use python verbose option (-v) to see original qhull error.";
}
throw std::runtime_error(msg);
}
/* Split facets so that they only have 3 points each. */
qh_triangulate(qh);
/* Determine ntri and max_facet_id.
Note that libqhull uses macros to iterate through collections. */
ntri = 0;
FORALLfacets {
if (!facet->upperdelaunay) {
++ntri;
}
}
max_facet_id = qh->facet_id - 1;
/* Create array to map facet id to triangle index. */
std::vector<int> tri_indices(max_facet_id+1);
/* Allocate Python arrays to return. */
int dims[2] = {ntri, 3};
IndexArray triangles(dims);
int* triangles_ptr = triangles.mutable_data();
IndexArray neighbors(dims);
int* neighbors_ptr = neighbors.mutable_data();
/* Determine triangles array and set tri_indices array. */
i = 0;
FORALLfacets {
if (!facet->upperdelaunay) {
int indices[3];
tri_indices[facet->id] = i++;
get_facet_vertices(qh, facet, indices);
*triangles_ptr++ = (facet->toporient ? indices[0] : indices[2]);
*triangles_ptr++ = indices[1];
*triangles_ptr++ = (facet->toporient ? indices[2] : indices[0]);
}
else {
tri_indices[facet->id] = -1;
}
}
/* Determine neighbors array. */
FORALLfacets {
if (!facet->upperdelaunay) {
int indices[3];
get_facet_neighbours(facet, tri_indices, indices);
*neighbors_ptr++ = (facet->toporient ? indices[2] : indices[0]);
*neighbors_ptr++ = (facet->toporient ? indices[0] : indices[2]);
*neighbors_ptr++ = indices[1];
}
}
return py::make_tuple(triangles, neighbors);
}
/* Process Python arguments and call Delaunay implementation method. */
static py::tuple
delaunay(const CoordArray& x, const CoordArray& y, int verbose)
{
if (x.ndim() != 1 || y.ndim() != 1) {
throw std::invalid_argument("x and y must be 1D arrays");
}
auto npoints = x.shape(0);
if (npoints != y.shape(0)) {
throw std::invalid_argument("x and y must be 1D arrays of the same length");
}
if (npoints < 3) {
throw std::invalid_argument("x and y arrays must have a length of at least 3");
}
if (!at_least_3_unique_points(npoints, x.data(), y.data())) {
throw std::invalid_argument("x and y arrays must consist of at least 3 unique points");
}
return delaunay_impl(npoints, x.data(), y.data(), verbose == 0);
}
PYBIND11_MODULE(_qhull, m) {
m.doc() = "Computing Delaunay triangulations.\n";
m.def("delaunay", &delaunay, "x"_a, "y"_a, "verbose"_a,
"--\n\n"
"Compute a Delaunay triangulation.\n"
"\n"
"Parameters\n"
"----------\n"
"x, y : 1d arrays\n"
" The coordinates of the point set, which must consist of at least\n"
" three unique points.\n"
"verbose : int\n"
" Python's verbosity level.\n"
"\n"
"Returns\n"
"-------\n"
"triangles, neighbors : int arrays, shape (ntri, 3)\n"
" Indices of triangle vertices and indices of triangle neighbors.\n");
m.def("version", []() { return qh_version; },
"version()\n--\n\n"
"Return the qhull version string.");
}