-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpatch_ops_test.py
139 lines (120 loc) · 4.81 KB
/
patch_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.patch_ops."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from object_detection.utils import patch_ops
class GetPatchMaskTest(tf.test.TestCase, parameterized.TestCase):
def testMaskShape(self):
image_shape = [15, 10]
mask = patch_ops.get_patch_mask(
10, 5, patch_size=3, image_shape=image_shape)
self.assertListEqual(mask.shape.as_list(), image_shape)
def testHandleImageShapeWithChannels(self):
image_shape = [15, 10, 3]
mask = patch_ops.get_patch_mask(
10, 5, patch_size=3, image_shape=image_shape)
self.assertListEqual(mask.shape.as_list(), image_shape[:2])
def testMaskDType(self):
mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=[6, 7])
self.assertDTypeEqual(mask, bool)
def testMaskAreaWithEvenPatchSize(self):
image_shape = [6, 7]
mask = patch_ops.get_patch_mask(2, 3, patch_size=2, image_shape=image_shape)
expected_mask = np.array([
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
]).reshape(image_shape).astype(bool)
self.assertAllEqual(mask, expected_mask)
def testMaskAreaWithEvenPatchSize4(self):
image_shape = [6, 7]
mask = patch_ops.get_patch_mask(2, 3, patch_size=4, image_shape=image_shape)
expected_mask = np.array([
[0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
]).reshape(image_shape).astype(bool)
self.assertAllEqual(mask, expected_mask)
def testMaskAreaWithOddPatchSize(self):
image_shape = [6, 7]
mask = patch_ops.get_patch_mask(2, 3, patch_size=3, image_shape=image_shape)
expected_mask = np.array([
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
]).reshape(image_shape).astype(bool)
self.assertAllEqual(mask, expected_mask)
def testMaskAreaPartiallyOutsideImage(self):
image_shape = [6, 7]
mask = patch_ops.get_patch_mask(5, 6, patch_size=5, image_shape=image_shape)
expected_mask = np.array([
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 1, 1],
]).reshape(image_shape).astype(bool)
self.assertAllEqual(mask, expected_mask)
@parameterized.parameters(
{'y': 0, 'x': -1},
{'y': -1, 'x': 0},
{'y': 0, 'x': 11},
{'y': 16, 'x': 0},
)
def testStaticCoordinatesOutsideImageRaisesError(self, y, x):
image_shape = [15, 10]
with self.assertRaises(tf.errors.InvalidArgumentError):
patch_ops.get_patch_mask(y, x, patch_size=3, image_shape=image_shape)
def testDynamicCoordinatesOutsideImageRaisesError(self):
image_shape = [15, 10]
x = tf.random_uniform([], minval=-2, maxval=-1, dtype=tf.int32)
y = tf.random_uniform([], minval=0, maxval=1, dtype=tf.int32)
mask = patch_ops.get_patch_mask(
y, x, patch_size=3, image_shape=image_shape)
with self.assertRaises(tf.errors.InvalidArgumentError):
self.evaluate(mask)
@parameterized.parameters(
{'patch_size': 0},
{'patch_size': -1},
)
def testStaticNonPositivePatchSizeRaisesError(self, patch_size):
image_shape = [6, 7]
with self.assertRaises(tf.errors.InvalidArgumentError):
patch_ops.get_patch_mask(
0, 0, patch_size=patch_size, image_shape=image_shape)
def testDynamicNonPositivePatchSizeRaisesError(self):
image_shape = [6, 7]
patch_size = -1 * tf.random_uniform([], minval=0, maxval=3, dtype=tf.int32)
mask = patch_ops.get_patch_mask(
0, 0, patch_size=patch_size, image_shape=image_shape)
with self.assertRaises(tf.errors.InvalidArgumentError):
self.evaluate(mask)
if __name__ == '__main__':
tf.test.main()