-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcantor.py
65 lines (49 loc) · 2.01 KB
/
cantor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
from collections import deque
from math import pow, floor, sqrt
def pair(*numbers: int) -> int:
"""
Maps a pair of non-negative integers to a uniquely associated single non-negative integer.
Pairing also generalizes for `n` non-negative integers, by recursively mapping the first pair.
For example, to map the following tuple:
(n_1, n_2, n_3)
the n_1, n_2 pair is mapped accordingly to a number n_p,
and then the n_p, n3 pair is mapped to produce the final association.
"""
if len(numbers) < 2:
raise ValueError('Cantor pairing function needs at least 2 numbers as input')
elif any((n < 0) or (not isinstance(n, int)) for n in numbers):
raise ValueError('Cantor pairing function maps only non-negative integers')
numbers = deque(numbers)
# fetch the first two numbers
n1 = numbers.popleft()
n2 = numbers.popleft()
mapping = (n1 + n2) * (n1 + n2 + 1) / 2 + n2
mapping = int(mapping)
if not numbers:
# recursion concludes
return mapping
else:
numbers.appendleft(mapping)
return pair(*numbers)
def unpair(number: int, n: int = 2) -> tuple:
"""
The inverse function outputs the pair associated with a non-negative integer.
Unpairing also generalizes by recursively unpairing a non-negative integer to `n` non-negative integers.
For example, to associate a `number` with three non-negative
integers n_1, n_2, n_3, such that:
pairing(n_1, n_2, n_3) = `number`
the `number` will first be unpaired to n_p, n_3, then the n_p will be unpaired to n_1, n_2,
producing the desired n_1, n_2 and n_3.
"""
if (number < 0) or (not isinstance(number, int)):
raise ValueError('Cantor unpairing function requires a non-negative integer')
w = floor((sqrt(8 * number + 1) - 1) / 2)
t = (pow(w, 2) + w) / 2
n2 = int(number - t)
n1 = int(w - n2)
if n > 2:
return unpair(n1, n - 1) + (n2,)
else:
# recursion concludes
return n1, n2