-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathThreeDVector.py
458 lines (353 loc) · 15 KB
/
ThreeDVector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import numpy as np
from manimlib.imports import *
### This is the newest (2020.05.19) ThreeDVector class by @魔与方
def cross_product(v1, v2):
return np.array([
v1[1] * v2[2] - v1[2] * v2[1],
v1[2] * v2[0] - v1[0] * v2[2],
v1[0] * v2[1] - v1[1] * v2[0]
])
class ThreeDVector(VMobject):
"""This vector has two parts
The top part is a cone (tip)
The bottom part is a circular cone
The parameter "tip_length" means the height of the cone (tip)
The parameter "tip_radius" means the base radius of the cone (tip)
The parameter "bottom_radius" means the bottom base radius of the truncated cone
The parameter "top_radius"means the top base radius of the truncated cone
The parameter "circle_side_width" means the width of the side of the base circle of the cone and the base circles of the truncated cone
The parameter "circle_side_color" means the color of the side of the base circle of the cone and the base circles of the truncated cone
"""
CONFIG = {
'color': BLUE,
'tip_length_to_vector_length': 1 / 5, # The ratio of "tip_length" to the length of vector
'tip_radius_to_tip_length': 1 / 2, # The ratio of "tip_radius" to "tip_length"
'bottom_radius_to_tip_radius': 2 / 5, # The ratio of "bottom_radius" to "tip_radius"
'top_radius_to_bottom_radius': 0, # The ratio of "top_radius" to "bottom_radius"
'max_tip_length': 0.8, # The maximum of "tip_length"
'max_bottom_radius': 0.2, # The maximum of "bottom_radius"
'circle_side_width': 2,
'circle_side_color': None,
'delta_radian': np.sqrt(3) / 60,
'fill_opacity': 1,
}
def __init__(self, vector=RIGHT, position=ORIGIN, **kwargs):
VMobject.__init__(self, **kwargs)
self.__vector_position_dot = Dot(ORIGIN, radius=0.01, fill_opacity=0)
self.__vector_end_dot = Dot([0, 0, get_norm(vector)], radius=0.01, fill_opacity=0)
self.add(self.__vector_position_dot, self.__vector_end_dot)
self.__get_some_parameters()
if get_norm(vector) > 0.:
self.__add_truncated_cone()
self.__add_tip()
self.__delete_some_useless_parameters()
self.set_direction(vector)
self.shift(position)
def __get_some_parameters(self):
self.vector_length = self.get_vector_length()
self.tip_length = self.get_vector_length() * self.tip_length_to_vector_length
if self.tip_length > self.max_tip_length:
self.tip_length = self.max_tip_length
self.tip_length_to_vector_length = self.tip_length / self.vector_length
self.tip_radius = self.tip_length * self.tip_radius_to_tip_length
self.bottom_radius = self.tip_radius * self.bottom_radius_to_tip_radius
if self.bottom_radius > self.max_bottom_radius:
self.bottom_radius = self.max_bottom_radius
self.bottom_radius_to_tip_radius = self.bottom_radius / self.tip_radius
self.top_radius = self.bottom_radius * self.top_radius_to_bottom_radius
self.tip_bottom_delta_theta = self.delta_radian / self.tip_radius
self.bottom_delta_theta = self.delta_radian / self.bottom_radius
if self.circle_side_color == None:
self.circle_side_color = self.color
def __add_truncated_cone(self):
thetas = np.c_[0:2 * np.pi:self.bottom_delta_theta]
bc_points = np.c_[
self.bottom_radius * np.cos(thetas),
self.bottom_radius * np.sin(thetas),
np.zeros_like(thetas)].tolist()
tc_points = np.c_[
self.top_radius * np.cos(thetas),
self.top_radius * np.sin(thetas),
np.full_like(thetas, self.vector_length - self.tip_length)].tolist()
for i in range(-1, len(bc_points) - 1):
self.add(Polygon(
*[*bc_points[i:i + 2], tc_points[i + 1], tc_points[i]],
color=self.color,
stroke_width=1,
stroke_color=self.color,
fill_opacity=self.fill_opacity,
shade_in_3d=True)
)
self.add(Polygon(
*bc_points,
color=self.color,
stroke_width=self.circle_side_width,
stroke_color=self.circle_side_color,
fill_opacity=self.fill_opacity,
shade_in_3d=True)
)
def __add_tip(self):
thetas = np.c_[0:2 * np.pi:self.tip_bottom_delta_theta]
tbc_points = np.c_[
self.tip_radius * np.cos(thetas),
self.tip_radius * np.sin(thetas),
np.full_like(thetas, self.vector_length - self.tip_length)].tolist()
for i in range(-1, len(tbc_points) - 1):
self.add(
Polygon(
*[*tbc_points[i:i + 2], [0, 0, self.vector_length]],
color=self.color,
stroke_width=1,
stroke_color=self.color,
fill_opacity=self.fill_opacity,
shade_in_3d=True),
)
self.add(Polygon(
*tbc_points,
color=self.color,
stroke_width=self.circle_side_width,
stroke_color=self.circle_side_color,
fill_opacity=self.fill_opacity,
shade_in_3d=True)
)
def __delete_some_useless_parameters(self):
del self.vector_length
del self.tip_length
del self.tip_radius
del self.bottom_radius
del self.top_radius
del self.delta_radian
def get_position(self):
# This method is used to get the position of vector
# In this class, the position of the vector all means the position of beginning point of the vector
return self.__vector_position_dot.get_center()
def get_end(self):
# This method is used to get the position of end point of the vector
return self.__vector_end_dot.get_center()
def get_vector(self):
# This method is used to get the array of the vector
return self.get_end() - self.get_position()
def get_vector_length(self):
# This method is used to get the length of the vector
return get_norm(self.get_vector())
def get_unit_vector(self):
# This method is used to get the unit vector of the vector
return self.get_vector() / self.get_vector_length()
def get_tip_length(self):
return self.get_vector_length() * self.tip_length_to_vector_length
def get_tip_radius(self):
return self.get_tip_length() * self.tip_radius_to_tip_length
def get_bottom_radius(self):
return self.get_tip_radius() * self.bottom_radius_to_tip_radius
def get_top_radius(self):
return self.get_bottom_radius() * self.top_radius_to_bottom_radius
def set_direction(self, new_direction):
# This method is used to change the direction of vector into a new direction
# It only changes the direction but not changes the length of the vector
norm = np.array(new_direction, dtype=np.float64) / get_norm(new_direction)
cosine = self.get_unit_vector().dot(norm)
if cosine > 1.:
cosine = 1
elif cosine < -1.:
cosine = -1
return self.rotate(
np.arccos(cosine),
axis=cross_product(self.get_vector(), norm),
about_point=self.get_position())
def set_position(self, new_position):
# This method is used to change the position of vector into a new position
return self.shift(np.array(new_position, dtype=np.float64) - self.get_position())
def set_vector_length(self, new_length):
# This method is used to change the length of the vector into a new length
# It achieves the aim through scaling the vector(self.scale(...)), so the vector will be made larger of smaller
# Scaling the vector will also change the position of the vector
# So this method also sets the position to the original position
original_position = self.get_position()
self.scale(new_length / self.get_vector_length())
return self.set_position(original_position)
def set_vector(self, new_vector, new_position=None):
# This method does the three things below:
# The first one is changing the direction of the vector into the direction of a new vector
# The second one is changing the length of the vector into the length of the new vector
# The last one is changing the position of the vector into the position of the new vector
# If you don't give the paramter 'new_position', the last one won't be done
if new_position:
self.set_position(new_position)
self.set_direction(new_vector)
return self.set_vector_length(get_norm(new_vector))
def move_along_curve(self, func, t, dt):
# The form of this parameter 'func' is 'lambda t:np.array([x(t),y(t),z(t)])'
# This method will move the vector to a point on the curve of 'func'
# And change the direction of the vector into the direction of the tangent vector at this point
self.set_direction(func(t + dt) - func(t))
return self.set_position(func(t))
class ThreeDVectorByCone(ThreeDVector):
CONFIG = {
'top_radius_to_bottom_radius': 0,
}
class ThreeDVectorByCylinder(ThreeDVector):
CONFIG = {
'top_radius_to_bottom_radius': 1,
}
###TestExamples
class Test1(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
self.add(axes)
self.set_camera_orientation(phi=60 * DEGREES, theta=85 * DEGREES, distance=10)
direction1 = [1, 1, 1]
direction2 = [-1, 2, 1]
direction3 = [0, 0, 1]
direction4 = [0, -2, 0]
direction5 = [0, 0, 0]
v1 = ThreeDVector(direction1, color=BLUE)
v2 = ThreeDVector(direction2, color=GREEN)
v3 = ThreeDVector(direction3, color=RED)
v4 = ThreeDVector(direction4, color=YELLOW)
v5 = ThreeDVector(direction5, color=WHITE)
self.add(v1, v2, v3, v4, v5)
self.begin_ambient_camera_rotation(rate=1)
self.wait(10)
class Test2(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
self.add(axes)
self.set_camera_orientation(phi=60 * DEGREES, theta=0 * DEGREES, distance=10)
###See the source code comments for more details on the parameters below
direction = [2, 2, 2]
color = BLUE
tip_length_to_vector_length = 1 / 5
tip_radius_to_tip_length = 1 / 2
bottom_radius_to_tip_radius = 2 / 5
top_radius_to_bottom_radius = 1 / 2
max_tip_length = 0.8
max_bottom_radius = 0.2
circle_side_width = 2
circle_side_color = None
delta_radian = np.sqrt(3) / 60
fill_opacity = 1
vector = ThreeDVector(
direction,
color=color,
tip_length_to_vector_length=tip_length_to_vector_length,
tip_radius_to_tip_length=tip_radius_to_tip_length,
bottom_radius_to_tip_radius=bottom_radius_to_tip_radius,
max_tip_length=max_tip_length,
max_bottom_radius=max_bottom_radius,
circle_side_width=circle_side_width,
circle_side_color=circle_side_color,
delta_radian=delta_radian,
fill_opacity=fill_opacity
)
self.add(vector)
self.begin_ambient_camera_rotation(rate=1)
self.wait(10)
class Test3(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
self.add(axes)
self.set_camera_orientation(phi=60 * DEGREES, theta=-90 * DEGREES, distance=10)
direction = [0, 0, 2]
trtbr_list = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1] # The constraction of "top_radius_to_bottom_radius"
vectors = VGroup()
n = len(trtbr_list)
for x in range(n):
v = ThreeDVector(
direction,
# [0,0,0],
top_radius_to_bottom_radius=trtbr_list[x],
color=BLUE)
v.shift([-(n - 1) / 2 + x, 0, 0])
vectors.add(v)
# print(ORIGIN)
self.add(vectors)
# self.begin_ambient_camera_rotation(1)
self.wait(2)
class Test4(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
self.add(axes)
self.set_camera_orientation(phi=60 * DEGREES, theta=90 * DEGREES)
def func(t):
r = 1.5
velocity_z = 0.2
return np.array([
r * np.cos(t),
r * np.sin(t),
velocity_z * t
])
curve = ParametricFunction(
func,
color=RED,
t_min=0, t_max=3 * TAU,
shade_in_3d=True)
# self.add(curve)
v = ThreeDVector([1, 1, 1], [0, 0, 0], color=YELLOW)
self.add(v)
self.wait()
self.play(
v.set_direction, [2, 0, 0],
v.set_position, [1, 1, 0],
run_time=2)
print('***1***', v.get_vector(), v.get_position())
self.wait()
self.play(
v.set_vector_length, 3,
run_time=2)
print('***2***', v.get_vector_length())
self.wait()
self.play(
v.set_vector, [1, 0, 1],
run_time=2)
print('***3***', v.get_vector(), v.get_position(), v.get_vector_length())
self.wait()
print('***4***',
v.get_tip_length(),
v.get_tip_radius(),
v.get_bottom_radius(),
v.get_top_radius())
self.play(FadeOut(v))
v = ThreeDVector(color=GREEN)
self.play(ShowCreation(curve))
t = ValueTracker(0)
v.move_along_curve(func=func, t=t.get_value(), dt=0.005)
self.play(FadeIn(v))
self.wait(0.5)
def v_ud(obj):
obj.move_along_curve(func=func, t=t.get_value(), dt=0.005)
v.add_updater(v_ud)
self.add(v)
self.play(t.increment_value, 3 * TAU, rate_func=linear, run_time=5)
self.wait(2)
class Test5(ThreeDScene):
def construct(self):
axes = ThreeDAxes()
self.add(axes)
self.set_camera_orientation(phi=60 * DEGREES, theta=0 * DEGREES, distance=10)
direction = [2, 2, 2]
color = BLUE
tip_length_to_vector_length = 1 / 5
tip_radius_to_tip_length = 1 / 2
bottom_radius_to_tip_radius = 2 / 5
top_radius_to_bottom_radius = 1 / 2
max_tip_length = 0.8
max_bottom_radius = 0.2
circle_side_width = 2
circle_side_color = None
delta_radian = np.sqrt(3) / 60
fill_opacity = 1
v = ThreeDVector(
np.array([3, 4, 5]),
color=YELLOW,
bottom_radius_to_tip_radius=1,
max_tip_length=0,
max_bottom_radius=max_bottom_radius,
circle_side_width=circle_side_width,
circle_side_color=circle_side_color,
delta_radian=delta_radian,
fill_opacity=fill_opacity
)
self.play(FadeInFrom(v, OUT))
self.begin_ambient_camera_rotation()
self.wait(4)