-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathInterpolant.cpp
932 lines (851 loc) · 34.2 KB
/
Interpolant.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/* -*- c++ -*-
* Copyright (c) 2012-2023 by the GalSim developers team on GitHub
* https://github.com/GalSim-developers
*
* This file is part of GalSim: The modular galaxy image simulation toolkit.
* https://github.com/GalSim-developers/GalSim
*
* GalSim is free software: redistribution and use in source and binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions, and the disclaimer given in the accompanying LICENSE
* file.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the disclaimer given in the documentation
* and/or other materials provided with the distribution.
*/
//#define DEBUGLOGGING
#include "Interpolant.h"
#include "integ/Int.h"
#include "SBProfile.h"
#include "math/Sinc.h"
#include "math/Angle.h"
// Gary's original code used a lot of lookup tables, but most of these have analytic formulae
// that seem to be generally faster than the lookup table. Part of this is probably because
// our lookup table isn't super fast, so I'm leaving the code in, but disabled. If we manage
// to massively speed up the lookup table, it might be worth re-enabling this code with the
// following #define.
//
//#define USE_TABLES
// Gary's Quintic interpolant was designed to exactly interpolate up to 4th order of a Taylor
// series expansion. This implies F'(j) = F''(j) = F'''(j) = F''''(j) = 0. However, it
// doesn't have a continuous second derivative. I (MJ) derived an alternate version that does
// have a continuous second derivative, but doesn't have F''''(j) = 0. Gary thinks the
// F''''(j) = 0 constraint is more important than the continuous second derivatives, since:
//
// "The most important characteristic for the k interpolation is to have F(k) as close to zero as
// possible in the vicinity of the aliasing frequency. It's these components of F in the vicinity
// of 2 pi that cause the ghost images after interpolation. In this application I'm less worried
// about the continuous derivatives because the ringing at frequencies beyond the vicinity of
// k=2 pi does not affect the interpolated image if we know that we have zero-padded it before
// transforming."
//
// However, I have the alternate version coded up, so I figured I'd leave it in as an option.
// The two functions are actually extremely similar though, so I doubt it really matters that
// much which one we use in practice.
//
//#define ALT_QUINTIC
// For grins, I also figured out the Septimic formulae while I was at it:
//
// The version that correctly interpolates up to 6th order in the Taylor series (but has
// discontinuous 2nd and 3rd derivatives) is:
//
// |x| < 1: 1 + |x|^4 (-3899/144 + 9233/144 |x| - 7669/144 |x|^2 + 2191/144 |x|^3)
// |x| < 2: (|x|-1) (|x|-2) (481/10 - 7369/40 |x| + 1379/5 |x|^2 - 9517/48 |x|^3 + 2739/40 |x|^4
// - 2191/240 |x|^5)
// |x| < 3: (|x|-2) (|x|-3) (-1567/6 + 4401/8 |x| - 1373/3 |x|^2 + 27049/144 |x|^3 - 913/24 |x|^4
// + 2191/720 |x|^5)
// |x| < 4: (|x|-3) (|x|-4)^2 (-3211/60 + 781/12 |x| - 7067/240 |x|^2 + 2113/360 |x|^3
// - 313/720 |x|^4)
//
// F(u) = (1/45) s^7 (6780 c piu^2 + 98595 s - 98550 c - 39570 s piu^2 + 112 c piu^4)
//
// The version with continuous 1st, 2nd, and 3rd derivatives (but only accurately interpolates
// up to 5th order in a Taylor series) is:
//
// |x| < 1: 1 + |x|^4 (-203/8 + 2849/48 |x| - 293/6 |x|^2 + 665/48 |x|^3)
// |x| < 2: (|x|-1) (|x|-2) (913/20 - 10441/60 |x| + 5173/20 |x|^2 - 11051/60 |x|^3 + 5037/80 |x|^4
// - 133/16 |x|^5)
// |x| < 3: (|x|-2) (|x|-3) (-2987/12 + 31219/60 |x| - 5149/12 |x|^2 + 5233/30 |x|^3
// - 1679/48 |x|^4 + 133/48 |x|^5)
// |x| < 4: (|x|-3) (|x|-4)^4 (-383/120 + 539/240 |x| - 19/48 |x|^2)
//
// F(u) = s^6 (1995 s^2 - 98 - 702 piu^2 s^2 + 104 c s piu^2 - 1896 c s)
//
// Just in case we ever decide we want to go to the next order of polynomial interpolation...
namespace galsim {
double InterpolantFunction::operator()(double x) const { return _interp.xval(x); }
double Interpolant::getPositiveFlux2d() const
{
double p = getPositiveFlux();
double n = getNegativeFlux();
return p*p + n*n;
}
double Interpolant::getNegativeFlux2d() const
{
double p = getPositiveFlux();
double n = getNegativeFlux();
return 2*p*n;
}
double Interpolant::xvalWrapped(double x, int N) const
{
// sum over all arguments x+jN that are within range.
// Start by finding x+jN closest to zero
double xdown = x - N*std::floor(x/N + 0.5);
xassert(std::abs(xdown) <= N);
if (xrange() <= N) {
// This is the usual case.
return xval(xdown);
} else {
double xup = xdown+N;
double sum = 0.;
while (std::abs(xdown) <= xrange()) {
sum += xval(xdown);
xdown -= N;
}
while (xup <= xrange()) {
sum += xval(xup);
xup += N;
}
return sum;
}
}
void Interpolant::xvalMany(double* x, int N) const
{
// x is both input and output here.
// x_i <- xval(x_i)
for (; N; --N, ++x) *x = xval(*x);
}
void Interpolant::uvalMany(double* u, int N) const
{
// u is both input and output here.
// u_i <- uval(u_i)
for (; N; --N, ++u) *u = uval(*u);
}
//
// Delta
//
void Delta::shoot(PhotonArray& photons, UniformDeviate ud) const
{
const int N = photons.size();
dbg<<"Delta shoot: N = "<<N<<std::endl;
dbg<<"Target flux = 1.\n";
double fluxPerPhoton = 1./N;
for (int i=0; i<N; i++) {
photons.setPhoton(i, 0., 0., fluxPerPhoton);
}
dbg<<"Delta Realized flux = "<<photons.getTotalFlux()<<std::endl;
}
std::string Delta::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Delta(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// Nearest
//
double Nearest::xval(double x) const
{
return std::abs(x)>0.5 ? 0. : 1.;
}
double Nearest::uval(double u) const { return math::sinc(u); }
void Nearest::shoot(PhotonArray& photons, UniformDeviate ud) const
{
const int N = photons.size();
dbg<<"Nearest shoot: N = "<<N<<std::endl;
dbg<<"Target flux = 1.\n";
double fluxPerPhoton = 1./N;
for (int i=0; i<N; i++) {
photons.setPhoton(i, ud()-0.5, ud()-0.5, fluxPerPhoton);
}
dbg<<"Nearest Realized flux = "<<photons.getTotalFlux()<<std::endl;
}
std::string Nearest::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Nearest(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// SincInterpolant
//
double SincInterpolant::uval(double u) const
{
if (std::abs(u)>0.5) return 0.;
else if (std::abs(u)<0.5) return 1.;
else return 0.5;
}
double SincInterpolant::xval(double x) const { return math::sinc(x); }
double SincInterpolant::xvalWrapped(double x, int N) const
{
// Magic formula:
x *= M_PI;
if (N%2==0) {
if (std::abs(x) < 1.e-4) return 1. - x*x*(1/6.+1/2.-1./(6.*N*N));
return std::sin(x) * std::cos(x/N) / (N*std::sin(x/N));
} else {
if (std::abs(x) < 1.e-4) return 1. - (1./6.)*x*x*(1-1./(N*N));
return std::sin(x) / (N*std::sin(x/N));
}
}
void SincInterpolant::shoot(PhotonArray& photons, UniformDeviate ud) const
{
throw std::runtime_error("Photon shooting is not practical with sinc Interpolant");
}
std::string SincInterpolant::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.SincInterpolant(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// Linear
//
double Linear::xval(double x) const
{
x = std::abs(x);
if (x > 1.) return 0.;
else return 1.-x;
}
double Linear::uval(double u) const
{
double s = math::sinc(u);
return s*s;
}
void Linear::shoot(PhotonArray& photons, UniformDeviate ud) const
{
const int N = photons.size();
dbg<<"Linear shoot: N = "<<N<<std::endl;
dbg<<"Target flux = 1.\n";
double fluxPerPhoton = 1./N;
for (int i=0; i<N; i++) {
// *** Guessing here that 2 random draws is faster than a sqrt:
photons.setPhoton(i, ud() + ud() - 1., ud() + ud() - 1., fluxPerPhoton);
}
dbg<<"Linear Realized flux = "<<photons.getTotalFlux()<<std::endl;
}
std::string Linear::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Linear(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// Cubic
//
double Cubic::xval(double x) const
{
x = std::abs(x);
if (x < 1.) return 1. + x*x*(1.5*x-2.5);
else if (x < 2.) return -0.5*(x-1.)*(x-2.)*(x-2.);
else return 0.;
}
double Cubic::uval(double u) const
{
u = std::abs(u);
#ifdef USE_TABLES
return u>_uMax ? 0. : (*_tab)(u);
#else
double s = math::sinc(u);
double c = cos(M_PI*u);
return s*s*s*(3.*s-2.*c);
#endif
}
class CubicIntegrand
{
public:
CubicIntegrand(double u, const Cubic& c): _u(u), _c(c) {}
double operator()(double x) const { return _c.xval(x)*std::cos(2*M_PI*_u*x); }
private:
double _u;
const Cubic& _c;
};
double Cubic::uCalc(double u, double tolerance) const
{
CubicIntegrand ci(u, *this);
return 2.*( integ::int1d(ci, 0., 1., 0.1*tolerance, 0.1*tolerance)
+ integ::int1d(ci, 1., 2., 0.1*tolerance, 0.1*tolerance));
}
Cubic::Cubic(const GSParams& gsparams) : Interpolant(gsparams)
{
dbg<<"Start Cubic\n";
_range = 2.;
#ifdef USE_TABLES
double tol = gsparams.kvalue_accuracy;
// Strangely, not all compilers correctly setup an empty map when it is a
// static variable, so you can get seg faults using it.
// Doing an explicit clear fixes the problem.
if (_cache_umax.size() == 0) { _cache_umax.clear(); _cache_tab.clear(); }
if (_cache_umax.count(tol)) {
// Then uMax and tab are already cached.
_tab = _cache_tab[tol];
_uMax = _cache_umax[tol];
} else {
// Then need to do the calculation and then cache it.
const double uStep =
gsparams.table_spacing * std::pow(gsparams.kvalue_accuracy/10.,0.25);
_uMax = 0.;
_tab.reset(new TableBuilder(Table::spline));
for (double u=0.; u - _uMax < 1. || u<1.1; u+=uStep) {
double ft = uCalc(u);
#ifdef DEBUGLOGGING
double s = math::sinc(u);
double c = cos(M_PI*u);
double ft2 = s*s*s*(3.*s-2.*c);
dbg<<"u = "<<u<<", ft = "<<ft<<" "<<ft2<<" diff = "<<ft-ft2<<std::endl;
#endif
_tab->addEntry(u, ft);
if (std::abs(ft) > tol) _uMax = u;
}
_tab->finalize();
// Save these values in the cache.
_cache_tab[tol] = _tab;
_cache_umax[tol] = _uMax;
dbg<<"umax = "<<_uMax<<", alt umax = "<<
std::pow((3.*sqrt(3.)/8.)/tol, 1./3.) / M_PI <<std::endl;
}
#else
// uMax is the value where |ft| <= tolerance
// ft = sin(pi u)^3/(pi u)^3 * (3*sin(pi u)/(pi u) - 2*cos(pi u))
// |ft| < 2 max[sin(x)^3 cos(x)] / (pi u)^3
// = 2 (3sqrt(3)/16) / (pi u)^3
// umax = (3sqrt(3)/8 tol)^1/3 / pi
_uMax = std::pow((3.*sqrt(3.)/8.)/gsparams.kvalue_accuracy, 1./3.) / M_PI;
#endif
}
std::map<double,shared_ptr<TableBuilder> > Cubic::_cache_tab;
std::map<double,double> Cubic::_cache_umax;
std::string Cubic::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Cubic(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// Quintic
//
double Quintic::xval(double x) const
{
x = std::abs(x);
#ifdef ALT_QUINTIC
// Gary claims in http://arxiv.org/abs/1401.2636 that his quintic function (below) has the
// following properties:
//
// f(0) = 1
// f(1) = f(2) = f(3) = 0
// f'(0) = 0
// f'(1)_left = f'(1)_right
// f'(2)_left = f'(2)_right
// f'(3)_left = 0
// f''(0) = 0
// (*) f''(1)_left = f''(1)_right
// (*) f''(2)_left = f''(2)_right
// (*) f''(3)_left = 0
// f(x-3)+f(x-2) + f(x-1) + f(x) + f(x+1) + f(x+2) = 1 from 0..1
// F'(j) = F''(j) = F'''(j) = F''''(j) = 0
//
// However, it turns out that the second derivative continuity equations (marked * above)
// are not actually satisfied. I (MJ) tried to derive a version that does satisfy all
// the constraints and discovered that the system is over-constrained. If I keep the
// second derivative constraints and drop F''''(j) = 0, I get the following:
if (x <= 1.)
return 1. + x*x*x*(-15./2. + x*(32./3. + x*(-25./6.)));
else if (x <= 2.)
return (x-1.)*(x-2.)*(-23./4. + x*(169./12. + x*(-39./4. + x*(25./12.))));
else if (x <= 3.)
return (x-2.)*(x-3.)*(x-3.)*(x-3.)*(3./4. + x*(-5./12.));
else
return 0.;
#else
// This is Gary's original version with F''''(j) = 0, but f''(x) is not continuous at
// x = 1,2,3.
if (x <= 1.)
return 1. + x*x*x*(-95./12. + x*(23./2. + x*(-55./12.)));
else if (x <= 2.)
return (x-1.)*(x-2.)*(-23./4. + x*(29./2. + x*(-83./8. + x*(55./24.))));
else if (x <= 3.)
return (x-2.)*(x-3.)*(x-3.)*(-9./4. + x*(25./12. + x*(-11./24.)));
else
return 0.;
#endif
}
double Quintic::uval(double u) const
{
u = std::abs(u);
#ifdef USE_TABLES
return u>_uMax ? 0. : (*_tab)(u);
#else
double s = math::sinc(u);
double piu = M_PI*u;
double c = cos(piu);
double ssq = s*s;
double piusq = piu*piu;
#ifdef ALT_QUINTIC
return ssq*ssq*(ssq*(12.*piusq-50.) + 44.*s*c + 5.);
#else
return s*ssq*ssq*(s*(55.-19.*piusq) + 2.*c*(piusq-27.));
#endif
#endif
}
class QuinticIntegrand
{
public:
QuinticIntegrand(double u, const Quintic& q): _u(u), _q(q) {}
double operator()(double x) const { return _q.xval(x)*std::cos(2*M_PI*_u*x); }
private:
double _u;
const Quintic& _q;
};
double Quintic::uCalc(double u, double tolerance) const
{
QuinticIntegrand qi(u, *this);
return 2.*( integ::int1d(qi, 0., 1., 0.1*tolerance, 0.1*tolerance)
+ integ::int1d(qi, 1., 2., 0.1*tolerance, 0.1*tolerance)
+ integ::int1d(qi, 2., 3., 0.1*tolerance, 0.1*tolerance));
}
Quintic::Quintic(const GSParams& gsparams) : Interpolant(gsparams)
{
dbg<<"Start Quintic\n";
_range = 3.;
#ifdef USE_TABLES
double tol = gsparams.kvalue_accuracy;
// Strangely, not all compilers correctly setup an empty map when it is a
// static variable, so you can get seg faults using it.
// Doing an explicit clear fixes the problem.
if (_cache_umax.size() == 0) { _cache_umax.clear(); _cache_tab.clear(); }
if (_cache_umax.count(tol)) {
// Then uMax and tab are already cached.
_tab = _cache_tab[tol];
_uMax = _cache_umax[tol];
} else {
// Then need to do the calculation and then cache it.
const double uStep =
gsparams.table_spacing * std::pow(gsparams.kvalue_accuracy/10.,0.25);
_uMax = 0.;
_tab.reset(new TableBuilder(Table::spline));
for (double u=0.; u - _uMax < 1. || u<1.1; u+=uStep) {
dbg<<"u = "<<u<<std::endl;
double ft = uCalc(u);
_tab->addEntry(u, ft);
#ifdef DEBUGLOGGING
double s = math::sinc(u);
double piu = M_PI*u;
double c = cos(piu);
double ssq = s*s;
double piusq = piu*piu;
#ifdef ALT_QUINTIC
double ft2 = ssq*ssq*(ssq*(12.*piusq-50.) + 44.*s*c+5.);
#else
double ft2 = s*ssq*ssq*(s*(55.-19.*piusq) + 2.*c*(piusq-27.));
#endif
dbg<<"u = "<<u<<", ft = "<<ft<<" "<<ft2<<" diff = "<<ft-ft2<<std::endl;
#endif
if (std::abs(ft) > tol) _uMax = u;
}
_tab->finalize();
// Save these values in the cache.
_cache_tab[tol] = _tab;
_cache_umax[tol] = _uMax;
dbg<<"umax = "<<_uMax<<", alt umax = "<<
std::pow((25.*sqrt(5.)/108.)/tol, 1./3.) / M_PI <<std::endl;
}
#else
// uMax is the value where |ft| <= tolerance
// ft = sin(pi u)^5/(pi u)^5 * (sin(pi u)/(pi u)*(55.-19 pi^2 u^2)
// + 2*cos(pi u)*(pi^2 u^2-27)))
// |ft| < 2 max[sin(x)^5 cos(x))] / (pi u)^3
// = 2 (25sqrt(5)/216) / (pi u)^3
// umax = (25sqrt(5)/108 tol)^1/3 / pi
_uMax = std::pow((25.*sqrt(5.)/108.)/gsparams.kvalue_accuracy, 1./3.) / M_PI;
#endif
}
// Override default sampler configuration because Quintic filter has sign change in
// outer interval
void Quintic::checkSampler() const
{
if (_sampler.get()) return;
std::vector<double> ranges(8);
ranges[0] = -3.;
ranges[1] = -(1./11.)*(25.+sqrt(31.)); // This is the extra zero-crossing
ranges[2] = -2.;
ranges[3] = -1.;
for (int i=0; i<4; i++)
ranges[7-i] = -ranges[i];
_sampler.reset(new OneDimensionalDeviate(_interp, ranges, false, 1.0, _gsparams));
}
std::map<double,shared_ptr<TableBuilder> > Quintic::_cache_tab;
std::map<double,double> Quintic::_cache_umax;
std::string Quintic::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Quintic(";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
//
// Lanczos
//
double Lanczos::xCalc(double x) const
{
xassert(x >= 0);
xassert(x <= _nd);
double res; // res will be the result to return.
double s; // s will be sin(pi x) which we save for the flux conservation correction.
if (x > 1.e-4) {
// For low values of n, we can save some time by calculating sin(pi x)
// from the value of sin(pi x / n) using trig identities.
//
// At some point it might be worth implementing the same trick as we did with
// SBMoffat's kValue and pow functions, making these different cases all different
// functions and having the constructor just set the function once. Then calls to
// xval wouldn't have any jumps from the case or (if you wanted) even the
// _conserve_dc check.
switch (_n) {
case 1 : {
// Then xval = 1/pi^2 sin(pi x)^2 / x^2
s = sin(M_PI*x);
double temp = s/(M_PI * x);
res = temp*temp;
break;
}
case 2 : {
// Then xval = 2/pi^2 sin(pi x) sin(pi x/2) / x^2
// Let sn = sin(pi x/2), cn = cos(pi x/2)
// Then sin(pi x) = 2 * sn * cn
// xval = 4/pi^2 sn^2 cn / x^2
double sn, cn;
math::sincos(x * M_PI/2., sn, cn);
s = 2.*sn*cn;
res = (2./(M_PI*M_PI)) * s*sn/(x*x);
break;
}
case 3 : {
// Then xval = 3/pi^2 sin(pi x) sin(pi x/3) / x^2
// Let sn = sin(pi x/3)
// Then sin(pi x) = sn*(3-4sn^2)
// xval = 3/pi^2 sn^2*(3-4sn) / x^2
double sn = sin((M_PI/3.)*x);
s = sn*(3.-4.*sn*sn);
res = (3./(M_PI*M_PI)) * s*sn/(x*x);
break;
}
case 4 : {
double sn, cn;
math::sincos(x * M_PI/4, sn, cn);
s = sn*cn*(4.-8.*sn*sn);
res = (4./(M_PI*M_PI)) * s*sn/(x*x);
break;
}
case 5 : {
double sn = sin((M_PI/5.)*x);
double snsq = sn*sn;
s = sn*(5.-snsq*(20.-16.*snsq));
res = (5./(M_PI*M_PI)) * s*sn/(x*x);
break;
}
case 6 : {
double sn, cn;
math::sincos(x * M_PI/6., sn, cn);
double snsq = sn*sn;
s = sn*cn*(6.-32.*snsq*(1.-snsq));
res = (6./(M_PI*M_PI)) * s*sn/(x*x);
break;
}
case 7 : {
double sn = sin((M_PI/7.)*x);
double snsq = sn*sn;
s = sn*(7.-snsq*(56.-snsq*(112.-64.*snsq)));
res = (7./(M_PI*M_PI)) * s*sn/(x*x);
}
default : {
// Above n=7, there isn't much advantage anymore to specialization.
// The second sin call isn't much slower than the multiplications
// required to get sin(pi x) from sin(pi x/n)
s = sin(M_PI*x);
double sn = sin(M_PI*x/_nd);
res = (_nd/(M_PI*M_PI)) * s*sn/(x*x);
break;
}
}
} else { // x < 1.e-4
// res = n/(pi x)^2 * sin(pi x) * sin(pi x / n)
// ~= (1 - 1/6 pix^2) * (1 - 1/6 pix^2 / n^2)
// = 1 - 1/6 pix^2 ( 1 + 1/n^2 )
double pix = M_PI*x;
double temp = (1./6.) * pix*pix;
s = pix * (1. - temp);
res = 1. - temp * (1. + 1./(_nd*_nd));
// For x < 1.e-4, the errors in this approximation are less than 1.e-16.
}
// Gary's write up about this is in http://arxiv.org/abs/1401.2636.
// We start with Gary's eqn 22, and extend the subsequent derivation to 3rd order.
// (More in uCalc below than here...)
//
// An image with uniform f(x) = 1 when interpolated with Lanczos will have an error of:
// E(x) = 2 * Sum_j K(j) (cos(2 pi j x) - 1)
// = -2 K(1) (1-cos(2pix)) - 2 K(2) (1-cos(4pix)) - 2 K(3) (1-cos(6pix)) ...
//
// To preserve a uniform flux, we want to divide by (1 + the above value) to correct
// for the error.
//
// Unfortunately, it turns out that while K(1) << 1, the series from there on starts
// to converge more slowly, so the gains from each subsequent term become less.
// For n=3, the values of K(1)..K(4) are: 1.416e-3, 4.390e-5, 7.716e-6, 2.343e-6.
// Thus, it would be hard to use this method to get to significantly better accuracy
// than about 1.e-6.
//
// To give feel for how this correction goes, a 2-d unit flux field interpolated
// with Lanczos, n=3, has the following maximum errors:
//
// With no correction: 1.13e-2
// With _K1: 3.98e-4
// With _K2: 8.36e-5
// With _K3: 3.02e-5
// With _K4: 1.39e-5
// With _K5: 7.27e-6
//
// I stopped here, since we have other approximations that are only accurate to 1.e-5.
// But certainly, it will be hard to get much more accurate that this, at least with
// this framework for the correction.
// res /= 1. - 2.*_K1*(1.-cos(2.*M_PI*x)) - 2*_K2*(1.-cos(4.*M_PI*x)) - ...;
if (_conserve_dc) {
dbg<<"xCalc for x = "<<x<<std::endl;
dbg<<"res = "<<res<<" / ";
double ssq = s*s;
double factor = (1.
- 4.*_K[1]*ssq
- 16.*_K[2]*ssq*(1.-ssq)
- 4.*_K[3]*ssq*(9.-ssq*(24.-16.*ssq))
- 64.*_K[4]*ssq*(1.-ssq*(5.-ssq*(8.-4.*ssq)))
- 4.*_K[5]*ssq*(25.-ssq*(200.-ssq*(560.-ssq*(640.-256.*ssq)))));
res /= factor;
#ifdef DEBUGLOGGING
dbg<<factor<<" = "<<res<<std::endl;
dbg<<"factor = 1 - "<<2.*_K[1]*(1.-std::cos(2.*M_PI*x))
<<" - "<<2.*_K[2]*(1.-std::cos(4.*M_PI*x))
<<" - "<<2.*_K[3]*(1.-std::cos(6.*M_PI*x))
<<" - "<<2.*_K[4]*(1.-std::cos(8.*M_PI*x))
<<" - "<<2.*_K[5]*(1.-std::cos(10.*M_PI*x))<<" = "
<< (1.
- 2.*_K[1]*(1.-std::cos(2.*M_PI*x))
- 2.*_K[2]*(1.-std::cos(4.*M_PI*x))
- 2.*_K[3]*(1.-std::cos(6.*M_PI*x))
- 2.*_K[4]*(1.-std::cos(8.*M_PI*x))
- 2.*_K[5]*(1.-std::cos(10.*M_PI*x)))
<<" = "<<factor<<std::endl;
#endif
}
return res;
}
double Lanczos::uCalcRaw(double u) const
{
// F(u) = ( (vp+1) Si((vp+1)pi) - (vp-1) Si((vp-1)pi) +
// (vm-1) Si((vm-1)pi) - (vm+1) Si((vm+1)pi) ) / 2pi
double vp=_nd*(2.*u+1.);
double vm=_nd*(2.*u-1.);
double retval = (vm-1.)*math::Si(M_PI*(vm-1.))
-(vm+1.)*math::Si(M_PI*(vm+1.))
-(vp-1.)*math::Si(M_PI*(vp-1.))
+(vp+1.)*math::Si(M_PI*(vp+1.));
return retval/(2.*M_PI);
}
double Lanczos::uCalc(double u) const
{
double retval = uCalcRaw(u);
// The correction (described in xCalc) to preserve a uniform flux profile can be
// approximate by its series approximation, where I throw out terms that are 3rd
// order or higher in the coefficients (K1^3 ~ 3.e-9, so negligible), and the only
// 2nd order terms I keep have K1 as one of the terms (K2^2 ~ 2.e-9).
//
// (1+E(x))^-1 ~= 1 + 2K(1) (1-cos(2pix)) + 4K(1)^2 (1-cos(2pix))^2
// + 2K(2) (1-cos(4pix)) + 4K(1)K(2) (1-cos(2pix)) (1-cos(4pix))
// + 2K(3) (1-cos(6pix)) + 4K(1)K(3) (1-cos(2pix)) (1-cos(6pix))
// + 2K(4) (1-cos(8pix)) + 2K(5) (1-cos(10pix))
//
// The effect in the Fourier transform will then be a convolution by the fourier transform
// of (1+E(x))^-1:
//
// F[(1+E(x))^-1] = 2pi (
// D(k)
// + K(1) (-D(k-2pi) + 2 D(k) - D(k+2pi))
// + K(1)^2 (D(k-4pi) - 4 D(k-2pi) + 6 D(k) - 4 D(k+2pi) + D(k+4pi))
// + K(2) (-D(k-4pi) + 2 D(k) - D(k+4pi))
// + K(1) K(2) (D(k-6pi) - 2 D(k-4pi) - D(k-2pi) + 4 D(k) - D(k+2pi)
// - 2 D(k+4pi) + D(k+6pi))
// + K(3) (-D(k-6pi) + 2 D(k) - D(k+6pi))
// + K(1) K(3) (D(k-8pi) - 2 D(k-6pi) + D(k-4pi) - 2 D(k-2pi) + 4 D(k)
// - 2 D(k+2pi) + D(k+4pi) - 2 D(k+6pi) + D(k+8pi))
// + K(4) (-D(k-8pi) + 2 D(k) - D(k+8pi))
// + K(5) (-D(k-10pi) + 2 D(k) - D(k+10pi))
// )
//
// where D(k) is the Dirac delta function.
//
// When convolved with the original F(u) (since we are multiplying in real space, it
// becomes a convolution in k-space), we get:
//
// (1 + 2K1 + 6K1^2 + 2K2 + 2K1 K2 + 2K3 + 2K1 K3 + 2K4 + 2K5) F(u)
// + (-K1 - 4K1^2 - K1 K2 - 2K1 K3) ( F(u-1) + F(u+1) )
// + (K1^2 - K2 - 2K1 K2 + K1 K3) ( F(u-2) + F(u+2) )
// + (K1 K2 - K3 - 2K1 K3) ( F(u-3) + F(u+3) )
// + (K1 K3 - K4) ( F(u-4) + F(u+4) )
// + (-K5) ( F(u-5) + F(u+5) )
//
// These coefficients are constant, so they are stored in _C.
if (_conserve_dc) {
retval *= _C[0];
retval += _C[1] * (uCalcRaw(u+1.) + uCalcRaw(u-1.));
retval += _C[2] * (uCalcRaw(u+2.) + uCalcRaw(u-2.));
retval += _C[3] * (uCalcRaw(u+3.) + uCalcRaw(u-3.));
retval += _C[4] * (uCalcRaw(u+4.) + uCalcRaw(u-4.));
retval += _C[5] * (uCalcRaw(u+5.) + uCalcRaw(u-5.));
}
return retval;
}
Lanczos::Lanczos(int n, bool conserve_dc, const GSParams& gsparams) :
Interpolant(gsparams), _n(n), _nd(n), _conserve_dc(conserve_dc)
{
dbg<<"Start constructor for Lanczos n = "<<n<<std::endl;
// Reduce range slightly from n so we're not including points with zero weight in
// interpolations:
_range = _nd;
double tol = gsparams.kvalue_accuracy;
for(double u=0.;u<=10.;u+=0.1) dbg<<"F("<<u<<") = "<<uCalcRaw(u)<<std::endl;
_K.resize(6);
_K[1] = uCalcRaw(1.);
_K[2] = uCalcRaw(2.);
_K[3] = uCalcRaw(3.);
_K[4] = uCalcRaw(4.);
_K[5] = uCalcRaw(5.);
dbg<<"K1,2,3,4,5 = "<<_K[1]<<','<<_K[2]<<','<<_K[3]<<','<<_K[4]<<','<<_K[5]<<std::endl;
// See comments in _uCalc above.
// C0 = 1 + 2K1 + 6K1^2 + 2K2 + 2K1 K2 + 2K3 + 2K1 K3 + 2K4 + 2K5
// C1 = -K1 - 4K1^2 - K1 K2 - 2K1 K3
// C2 = K1^2 - K2 - 2K1 K2 + K1 K3
// C3 = K1 K2 - K3 - 2K1 K3
// C4 = K1 K3 - K4
// C5 = -K5
_C.resize(6);
_C[0] = 1. + 2.*(_K[1]*(1. + 3.*_K[1] + _K[2] + _K[3]) + _K[2] + _K[3] + _K[4] + _K[5]);
_C[1] = -_K[1] * (1. + 4.*_K[1] + _K[2] + 2.*_K[3]);
_C[2] = _K[1]*(_K[1] - 2.*_K[2] + _K[3]) - _K[2];
_C[3] = _K[1]*(_K[1] - 2.*_K[3]) - _K[3];
_C[4] = _K[1]*_K[3] - _K[4];
_C[5] = -_K[5];
dbg<<"C0,1,2,3,4,5 = "<<_C[0]<<','<<_C[1]<<','<<_C[2]<<','<<_C[3]<<','<<_C[4]
<<','<<_C[5]<<std::endl;
for (double x=0.; x<1.; x+=0.1) {
dbg<<"S("<<x<<") = ";
double sum = 0.;
for (int i=-_n;i<_n;++i) {
double val = math::sinc(x+i)*math::sinc((x+i)/_nd);
sum += val;
dbg<<val<<" + ";
}
dbg<<" = "<<sum<<std::endl;
dbg<<"Nominal S("<<x<<") = "<<
(1.
- 2.*_K[1]*(1.-std::cos(2.*M_PI*x))
- 2.*_K[2]*(1.-std::cos(4.*M_PI*x))
- 2.*_K[3]*(1.-std::cos(6.*M_PI*x))
- 2.*_K[4]*(1.-std::cos(8.*M_PI*x))
- 2.*_K[5]*(1.-std::cos(10.*M_PI*x))) << std::endl;
}
// Strangely, not all compilers correctly setup an empty map when it is a
// static variable, so you can get seg faults using it.
// Doing an explicit clear fixes the problem.
if (_cache_umax.size() == 0) {
_cache_umax.clear();
#ifdef USE_TABLES
_cache_xtab.clear();
#endif
_cache_utab.clear();
}
KeyType key(n,std::pair<bool,double>(_conserve_dc,tol));
if (_cache_umax.count(key)) {
// Then uMax and tab are already cached.
#ifdef USE_TABLES
_xtab = _cache_xtab[key];
#endif
_utab = _cache_utab[key];
_uMax = _cache_umax[key];
} else {
#ifdef USE_TABLES
// Build xtab = table of x values
_xtab.reset(new TableBuilder(Table::spline));
// Spline is accurate to O(dx^3), so errors should be ~dx^4.
const double xStep1 =
gsparams.table_spacing * std::pow(gsparams.xvalue_accuracy/10.,0.25);
// Make sure steps hit the integer values exactly.
const double xStep = 1. / std::ceil(1./xStep1);
for(double x=0.; x<_nd; x+=xStep) _xtab->addEntry(x, xCalc(x));
_xtab->finalize();
#endif
// Build utab = table of u values
_utab.reset(new TableBuilder(Table::spline));
// The peak second derivative of the Lanczos kernel if Fourier space empirically
// seems to a bit over ~100. Use 200 to be conservative, so this mean use
// h = (kvalue_accuracy/200)**0.25
const double uStep =
gsparams.table_spacing * std::pow(gsparams.kvalue_accuracy/200.,0.25) / _nd;
_uMax = 0.;
for (double u=0.; u - _uMax < 1./_nd || u<1.1; u+=uStep) {
double uval = uCalc(u);
_utab->addEntry(u, uval);
if (std::abs(uval) > gsparams.kvalue_accuracy) _uMax = u;
}
_utab->finalize();
// Save these values in the cache.
#ifdef USE_TABLES
_cache_xtab[key] = _xtab;
#endif
_cache_utab[key] = _utab;
_cache_umax[key] = _uMax;
}
}
std::map<Lanczos::KeyType,shared_ptr<TableBuilder> > Lanczos::_cache_xtab;
std::map<Lanczos::KeyType,shared_ptr<TableBuilder> > Lanczos::_cache_utab;
std::map<Lanczos::KeyType,double> Lanczos::_cache_umax;
double Lanczos::xval(double x) const
{
x = std::abs(x);
if (x >= _nd) return 0.;
else {
#ifdef USE_TABLES
return (*_xtab)(x);
#else
return xCalc(x);
#endif
}
}
double Lanczos::uval(double u) const
{
// For this one, we always use the lookup table.
u = std::abs(u);
return u>_uMax ? 0. : (*_utab)(u);
}
std::string Lanczos::makeStr() const
{
std::ostringstream oss(" ");
oss.precision(std::numeric_limits<double>::digits10 + 4);
oss << "galsim._galsim.Lanczos("<<_n<<", ";
if (_conserve_dc) oss << "True, ";
else oss << "False, ";
oss << "galsim._galsim.GSParams("<<_gsparams<<"))";
return oss.str();
}
}