-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathSBInclinedExponential.cpp
368 lines (312 loc) · 13.9 KB
/
SBInclinedExponential.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* -*- c++ -*-
* Copyright (c) 2012-2023 by the GalSim developers team on GitHub
* https://github.com/GalSim-developers
*
* This file is part of GalSim: The modular galaxy image simulation toolkit.
* https://github.com/GalSim-developers/GalSim
*
* GalSim is free software: redistribution and use in source and binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions, and the disclaimer given in the accompanying LICENSE
* file.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the disclaimer given in the documentation
* and/or other materials provided with the distribution.
*/
// See https://www.dropbox.com/s/z6h14bgd199czsi/Inclined_Exponential.pdf?dl=0
// for a write-up of much of the math involved in this file.
//#define DEBUGLOGGING
#include "SBInclinedExponential.h"
#include "SBInclinedExponentialImpl.h"
#include "integ/Int.h"
#include "Solve.h"
namespace galsim {
SBInclinedExponential::SBInclinedExponential(
double inclination, double scale_radius, double scale_height,
double flux, const GSParams& gsparams) :
SBProfile(new SBInclinedExponentialImpl(
inclination, scale_radius, scale_height, flux, gsparams))
{}
SBInclinedExponential::SBInclinedExponential(const SBInclinedExponential& rhs) :
SBProfile(rhs)
{}
SBInclinedExponential::~SBInclinedExponential() {}
double SBInclinedExponential::getInclination() const
{
assert(dynamic_cast<const SBInclinedExponentialImpl*>(_pimpl.get()));
return static_cast<const SBInclinedExponentialImpl&>(*_pimpl).getInclination();
}
double SBInclinedExponential::getScaleRadius() const
{
assert(dynamic_cast<const SBInclinedExponentialImpl*>(_pimpl.get()));
return static_cast<const SBInclinedExponentialImpl&>(*_pimpl).getScaleRadius();
}
double SBInclinedExponential::getScaleHeight() const
{
assert(dynamic_cast<const SBInclinedExponentialImpl*>(_pimpl.get()));
return static_cast<const SBInclinedExponentialImpl&>(*_pimpl).getScaleHeight();
}
SBInclinedExponential::SBInclinedExponentialImpl::SBInclinedExponentialImpl(
double inclination, double scale_radius,
double scale_height, double flux, const GSParams& gsparams) :
SBProfileImpl(gsparams),
_inclination(inclination),
_r0(scale_radius),
_h0(scale_height),
_flux(flux),
_inv_r0(1./scale_radius),
_half_pi_h_sini_over_r(0.5*M_PI*scale_height*std::abs(std::sin(inclination))/scale_radius),
_cosi(std::abs(std::cos(inclination))),
_ksq_max(integ::MOCK_INF) // Start with infinite _ksq_max so we can use kValueHelper to
// get a better value
{
dbg<<"Start SBInclinedExponential constructor:\n";
dbg<<"inclination = "<<_inclination<<std::endl;
dbg<<"scale radius = "<<_r0<<std::endl;
dbg<<"scale height = "<<_h0<<std::endl;
dbg<<"flux = "<<_flux<<std::endl;
// Now set up, using this value of cosi
xdbg<<"_half_pi_h_sini_over_r = "<<_half_pi_h_sini_over_r<<std::endl;
xdbg<<"_cosi = "<<_cosi<<std::endl;
// Calculate stepk, based on a conservative comparison to an exponential disk. The
// half-light radius of this will be smaller, so if we use an exponential's hlr, it
// will be at least large enough.
// int( exp(-r) r, r=0..R) = (1 - exp(-R) - Rexp(-R))
// Fraction excluded is thus (1+R) exp(-R)
// A fast solution to (1+R)exp(-R) = x:
// log(1+R) - R = log(x)
// R = log(1+R) - log(x)
double logx = std::log(this->gsparams.folding_threshold);
double R = -logx;
for (int i=0; i<3; i++) R = std::log(1.+R) - logx;
// Make sure it is at least 5 hlr of corresponding exponential
// half-light radius = 1.6783469900166605 * r0
const double exp_hlr = 1.6783469900166605;
R = std::max(R,this->gsparams.stepk_minimum_hlr*exp_hlr);
_stepk = M_PI / R;
dbg<<"stepk = "<<_stepk<<std::endl;
// For small k, we can use up to quartic in the taylor expansion of both terms
// in the calculation.
// This is acceptable when the next term is less than kvalue_accuracy.
// (35/16 + 31/15120 pi/2*h*sin(i)/r) * (k^2*r^2)^3 = kvalue_accuracy
// This is a bit conservative, note, assuming kx = 0
_ksq_min = std::pow(this->gsparams.kvalue_accuracy /
(35./16. + 31./15120.*_half_pi_h_sini_over_r), 1./3.);
// Solve for the proper _maxk and _ksq_max
double maxk_min = std::pow(this->gsparams.maxk_threshold, -1./3.);
double clipk_min = std::pow(this->gsparams.kvalue_accuracy, -1./3.);
// Check for face-on case, which doesn't need the solver
if(_cosi==1)
{
_maxk = maxk_min;
_ksq_max = clipk_min*clipk_min;
}
else // Use the solver
{
// Bracket it appropriately, starting with guesses based on the 1/cosi scaling
double maxk_max, clipk_max;
// Check bounds on _cosi to make sure initial guess range isn't too big or small
if(_cosi>0.01)
{
if(_cosi<0.96)
{
maxk_max = maxk_min/_cosi;
clipk_max = clipk_min/_cosi;
}
else
{
maxk_max = 1.05*maxk_min;
clipk_max = 1.05*clipk_min;
}
}
else
{
maxk_max = 100*maxk_min;
clipk_max = 100*clipk_min;
}
xdbg << "maxk_threshold = " << this->gsparams.maxk_threshold << std::endl;
xdbg << "F(" << maxk_min << ") = " << std::max(kValueHelper(maxk_min,0.),kValueHelper(0.,maxk_min)) << std::endl;
xdbg << "F(" << maxk_max << ") = " << std::max(kValueHelper(maxk_max,0.),kValueHelper(0.,maxk_max)) << std::endl;
SBInclinedExponentialKValueFunctor maxk_func(this,this->gsparams.maxk_threshold);
Solve<SBInclinedExponentialKValueFunctor> maxk_solver(maxk_func, maxk_min, maxk_max);
maxk_solver.setMethod(Brent);
if(maxk_func(maxk_min)<=0)
maxk_solver.bracketLowerWithLimit(0.);
else
maxk_solver.bracketUpper();
// Get the _maxk from the solver here. We add back on the tolerance to the result to
// ensure that the k-value will be below the threshold.
_maxk = maxk_solver.root() + maxk_solver.getXTolerance();
xdbg << "_maxk = " << _maxk << std::endl;
xdbg << "F(" << _maxk << ") = " << kValueHelper(0.,_maxk) << std::endl;
xdbg << "kvalue_accuracy = " << this->gsparams.kvalue_accuracy << std::endl;
xdbg << "F(" << clipk_min << ") = " << kValueHelper(0.,clipk_min) << std::endl;
xdbg << "F(" << clipk_max << ") = " << kValueHelper(0.,clipk_max) << std::endl;
SBInclinedExponentialKValueFunctor clipk_func(this,this->gsparams.kvalue_accuracy);
Solve<SBInclinedExponentialKValueFunctor> clipk_solver(clipk_func, clipk_min, clipk_max);
if(clipk_func(clipk_min)<=0)
clipk_solver.bracketLowerWithLimit(0.);
else
clipk_solver.bracketUpper();
// Get the clipk from the solver here. We add back on the tolerance to the result to
// ensure that the k-value will be below the threshold.
double clipk = clipk_solver.root() + clipk_solver.getXTolerance();
_ksq_max = clipk*clipk;
xdbg << "clipk = " << clipk << std::endl;
xdbg << "F(" << clipk << ") = " << kValueHelper(0.,clipk) << std::endl;
}
}
double SBInclinedExponential::SBInclinedExponentialImpl::maxSB() const
{
// When the disk is face on, the max SB is flux / 2 pi r0^2
// When the disk is edge on, the max SB is flux / 2 pi r0^2 * (r0/h0)
double maxsb = _flux * _inv_r0 * _inv_r0 / (2. * M_PI);
// The relationship for inclinations in between these is not linear.
// Empirically, it is vaguely linearish in ln(maxsb) vs. sqrt(cosi), so we use that for
// the interpolation.
double sc = sqrt(std::abs(_cosi));
maxsb *= std::exp(std::log(_r0/_h0) * (1.-sc));
// Err on the side of overestimating by multiplying by conservative_factor,
// which was found to work for the worst-case scenario
return std::abs(maxsb);
}
double SBInclinedExponential::SBInclinedExponentialImpl::xValue(const Position<double>& p) const
{
throw std::runtime_error(
"Real-space expression of SBInclinedExponential is not yet implemented.");
return 0;
}
std::complex<double> SBInclinedExponential::SBInclinedExponentialImpl::kValue(
const Position<double>& k) const
{
double kx = k.x*_r0;
double ky = k.y*_r0;
return _flux * kValueHelper(kx,ky);
}
template <typename T>
void SBInclinedExponential::SBInclinedExponentialImpl::fillKImage(
ImageView<std::complex<T> > im,
double kx0, double dkx, int izero,
double ky0, double dky, int jzero) const
{
dbg<<"SBInclinedExponential fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<", izero = "<<izero<<std::endl;
dbg<<"ky = "<<ky0<<" + j * "<<dky<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillKImageQuadrant(im,kx0,dkx,izero,ky0,dky,jzero);
} else {
xdbg<<"Non-Quadrant\n";
const int m = im.getNCol();
const int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= _r0;
dkx *= _r0;
ky0 *= _r0;
dky *= _r0;
for (int j=0; j<n; ++j,ky0+=dky,ptr+=skip) {
double kx = kx0;
for (int i=0; i<m; ++i,kx+=dkx)
*ptr++ = _flux * kValueHelper(kx,ky0);
}
}
}
template <typename T>
void SBInclinedExponential::SBInclinedExponentialImpl::fillKImage(
ImageView<std::complex<T> > im,
double kx0, double dkx, double dkxy,
double ky0, double dky, double dkyx) const
{
dbg<<"SBInclinedExponential fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<" + j * "<<dkxy<<std::endl;
dbg<<"ky = "<<ky0<<" + i * "<<dkyx<<" + j * "<<dky<<std::endl;
const int m = im.getNCol();
const int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= _r0;
dkx *= _r0;
dkxy *= _r0;
ky0 *= _r0;
dky *= _r0;
dkyx *= _r0;
for (int j=0; j<n; ++j,kx0+=dkxy,ky0+=dky,ptr+=skip) {
double kx = kx0;
double ky = ky0;
for (int i=0; i<m; ++i,kx+=dkx,ky+=dkyx)
*ptr++ = _flux * kValueHelper(kx,ky);
}
}
double SBInclinedExponential::SBInclinedExponentialImpl::maxK() const
{ return _maxk * _inv_r0; }
double SBInclinedExponential::SBInclinedExponentialImpl::stepK() const
{ return _stepk * _inv_r0; }
double SBInclinedExponential::SBInclinedExponentialImpl::kValueHelper(
double kx, double ky) const
{
// Calculate the base value for an exponential profile
double ky_cosi = ky*_cosi;
double ky_cosi_sq = ky_cosi*ky_cosi;
double ksq = kx*kx + ky_cosi_sq;
double res_base;
if (ksq > _ksq_max)
{
return 0.;
}
else if (ksq < _ksq_min)
{
res_base = (1. - 1.5*ksq*(1. - 1.25*ksq));
xxdbg << "res_base (upper limit) = " << res_base << std::endl;
}
else
{
double temp = 1. + ksq;
res_base = 1./(temp*sqrt(temp));
xxdbg << "res_base (normal) = " << res_base << std::endl;
}
// Calculate the convolution factor
double res_conv;
double scaled_ky = _half_pi_h_sini_over_r*ky;
double scaled_ky_squared = scaled_ky*scaled_ky;
if (scaled_ky_squared < _ksq_min)
{
// Use Taylor expansion to speed up calculation
res_conv = (1. - 0.16666666667*scaled_ky_squared *
(1. - 0.116666666667*scaled_ky_squared));
xxdbg << "res_conv (lower limit) = " << res_conv << std::endl;
}
else
{
res_conv = scaled_ky / std::sinh(scaled_ky);
xxdbg << "res_conv (normal) = " << res_conv << std::endl;
}
double res = res_base*res_conv;
return res;
}
// Not yet implemented, but needs to be defined
void SBInclinedExponential::SBInclinedExponentialImpl::shoot(
PhotonArray& photons, UniformDeviate ud) const
{
throw std::runtime_error(
"Photon shooting not yet implemented for SBInclinedExponential profile.");
}
SBInclinedExponential::SBInclinedExponentialImpl::
SBInclinedExponentialKValueFunctor::SBInclinedExponentialKValueFunctor(
const SBInclinedExponential::SBInclinedExponentialImpl * p_owner,
double target_k_value) :
_p_owner(p_owner), _target_k_value(target_k_value)
{}
double SBInclinedExponential::SBInclinedExponentialImpl::
SBInclinedExponentialKValueFunctor::operator()(double k) const
{
assert(_p_owner);
double k_value = std::max(_p_owner->kValueHelper(0.,k),_p_owner->kValueHelper(k,0.));
return k_value - _target_k_value;
}
}