-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathSBMoffat.cpp
661 lines (590 loc) · 24.9 KB
/
SBMoffat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/* -*- c++ -*-
* Copyright (c) 2012-2023 by the GalSim developers team on GitHub
* https://github.com/GalSim-developers
*
* This file is part of GalSim: The modular galaxy image simulation toolkit.
* https://github.com/GalSim-developers/GalSim
*
* GalSim is free software: redistribution and use in source and binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions, and the disclaimer given in the accompanying LICENSE
* file.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the disclaimer given in the documentation
* and/or other materials provided with the distribution.
*/
//#define DEBUGLOGGING
#include <cmath>
#include "SBMoffat.h"
#include "SBMoffatImpl.h"
#include "integ/Int.h"
#include "Solve.h"
#include "math/Bessel.h"
#include "math/Gamma.h"
#include "math/Angle.h"
#include "math/Hankel.h"
#include "fmath/fmath.hpp"
// Define this variable to find azimuth (and sometimes radius within a unit disc) of 2d photons by
// drawing a uniform deviate for theta, instead of drawing 2 deviates for a point on the unit
// circle and rejecting corner photons.
// The relative speed of the two methods was tested as part of issue #163, and the results
// are collated in devutils/external/time_photon_shooting.
// The conclusion was that using sin/cos was faster for icpc, but not g++ or clang++.
#ifdef _INTEL_COMPILER
#define USE_COS_SIN
#endif
namespace galsim {
inline double fast_pow(double x, double y)
{ return fmath::expd(y * std::log(x)); }
SBMoffat::SBMoffat(double beta, double scale_radius, double trunc, double flux,
const GSParams& gsparams) :
SBProfile(new SBMoffatImpl(beta, scale_radius, trunc, flux, gsparams)) {}
SBMoffat::SBMoffat(const SBMoffat& rhs) : SBProfile(rhs) {}
SBMoffat::~SBMoffat() {}
double SBMoffat::getBeta() const
{
assert(dynamic_cast<const SBMoffatImpl*>(_pimpl.get()));
return static_cast<const SBMoffatImpl&>(*_pimpl).getBeta();
}
double SBMoffat::getFWHM() const
{
assert(dynamic_cast<const SBMoffatImpl*>(_pimpl.get()));
return static_cast<const SBMoffatImpl&>(*_pimpl).getFWHM();
}
double SBMoffat::getScaleRadius() const
{
assert(dynamic_cast<const SBMoffatImpl*>(_pimpl.get()));
return static_cast<const SBMoffatImpl&>(*_pimpl).getScaleRadius();
}
double SBMoffat::getHalfLightRadius() const
{
assert(dynamic_cast<const SBMoffatImpl*>(_pimpl.get()));
return static_cast<const SBMoffatImpl&>(*_pimpl).getHalfLightRadius();
}
double SBMoffat::getTrunc() const
{
assert(dynamic_cast<const SBMoffatImpl*>(_pimpl.get()));
return static_cast<const SBMoffatImpl&>(*_pimpl).getTrunc();
}
class MoffatScaleRadiusFunc
{
public:
MoffatScaleRadiusFunc(double re, double rm, double beta) :
_re(re), _rm(rm), _beta(beta) {}
double operator()(double rd) const
{
double fre = 1.-fast_pow(1.+(_re*_re)/(rd*rd), 1.-_beta);
double frm = 1.-fast_pow(1.+(_rm*_rm)/(rd*rd), 1.-_beta);
xdbg<<"func("<<rd<<") = 2*"<<fre<<" - "<<frm<<" = "<<2.*fre-frm<<std::endl;
return 2.*fre-frm;
}
private:
double _re,_rm,_beta;
};
double MoffatCalculateScaleRadiusFromHLR(double re, double rm, double beta)
{
dbg<<"Start MoffatCalculateScaleRadiusFromHLR\n";
// The basic equation that is relevant here is the flux of a Moffat profile
// out to some radius.
// flux(R) = int( (1+r^2/rd^2 )^(-beta) 2pi r dr, r=0..R )
// = (pi rd^2 / (beta-1)) (1 - (1+R^2/rd^2)^(1-beta) )
// For now, we can ignore the first factor. We call the second factor fluxfactor below,
// or in this function f(R).
//
// We are given two values of R for which we know that the ratio of their fluxes is 1/2:
// f(re) = 0.5 * f(rm)
//
if (rm == 0.) {
// If rm = infinity (which we actually indicate with rm=0), then we can solve for
// rd analytically:
//
// f(rm) = 1
// f(re) = 0.5 = 1 - (1+re^2/rd^2)^(1-beta)
// re^2/rd^2 = 0.5^(1/(1-beta)) - 1
double rerd = std::sqrt( std::pow(0.5, 1./(1.-beta)) - 1.);
dbg<<"rm = 0, so analytic.\n";
xdbg<<"rd = re/rerd = "<<re<<" / "<<rerd<<" = "<<re/rerd<<std::endl;
return re / rerd;
} else {
// If trunc < infinity, then the equations are slightly circular:
// f(rm) = 1 - (1 + rm^2/rd^2)^(1-beta)
// 2*f(re) = 2 - 2*(1 + re^2/rd^2)^(1-beta)
// 2*(1+re^2/rd^2)^(1-beta) = 1 + (1+rm^2/rd^2)^(1-beta)
//
// As rm decreases, rd increases.
// Eventually rd increases to infinity. When does that happen:
// Take the limit as rd->infinity in the above equation:
// 2 + 2*(1-beta) re^2/rd^2) = 1 + 1 + (1-beta) rm^2/rd^2
// 2 re^2 = rm^2
// rm = sqrt(2) * re
// So this is the limit for how low rm is allowed to be for a given re
if (rm <= std::sqrt(2.) * re)
throw SBError("Moffat truncation radius must be > sqrt(2) * half_light_radius.");
dbg<<"rm != 0, so not analytic.\n";
MoffatScaleRadiusFunc func(re,rm,beta);
// For the lower bound of rd, we can use the untruncated value:
double r1 = re / std::sqrt( std::pow(0.5, 1./(1.-beta)) - 1.);
xdbg<<"r1 = "<<r1<<std::endl;
// For the upper bound, we don't really have a good choice, so start with 2*r1
// and we'll expand it if necessary.
double r2 = 2. * r1;
xdbg<<"r2 = "<<r2<<std::endl;
Solve<MoffatScaleRadiusFunc> solver(func,r1,r2);
solver.setMethod(Brent);
solver.bracketUpper();
xdbg<<"After bracket, range is "<<solver.getLowerBound()<<" .. "<<
solver.getUpperBound()<<std::endl;
double rd = solver.root();
xdbg<<"Root is "<<rd<<std::endl;
return rd;
}
}
SBMoffat::SBMoffatImpl::SBMoffatImpl(double beta, double scale_radius,
double trunc, double flux,
const GSParams& gsparams) :
SBProfileImpl(gsparams),
_beta(beta), _flux(flux), _rD(scale_radius),
_rD_sq(_rD * _rD), _inv_rD(1./_rD), _inv_rD_sq(_inv_rD*_inv_rD),
_trunc(trunc),
_ft(Table::spline),
_stepk(0.), // calculated by stepK() and stored.
_maxk(0.) // calculated by maxK() and stored.
{
xdbg<<"Start SBMoffat constructor: \n";
xdbg<<"beta = "<<_beta<<"\n";
xdbg<<"flux = "<<_flux<<"\n";
xdbg<<"trunc = "<<_trunc<<"\n";
if (_trunc == 0. && beta <= 1.1)
throw SBError("Moffat profiles with beta <= 1.1 must be truncated.");
if (_trunc < 0.)
throw SBError("Invalid negative truncation radius provided to SBMoffat.");
if (_trunc > 0.) {
_maxRrD = _trunc * _inv_rD;
xdbg<<"maxRrD = "<<_maxRrD<<"\n";
// Analytic integration of total flux:
_fluxFactor = 1. - std::pow( 1+_maxRrD*_maxRrD, (1.-_beta));
} else {
_fluxFactor = 1.;
// Set maxRrD to the radius where missing fractional flux is xvalue_accuracy
// (1+R^2)^(1-beta) = xvalue_accuracy
_maxRrD = std::sqrt(std::pow(this->gsparams.xvalue_accuracy, 1. / (1. - _beta))- 1.);
xdbg<<"Not truncated. Calculated maxRrD = "<<_maxRrD<<"\n";
}
_maxR = _maxRrD * _rD;
_maxR_sq = _maxR * _maxR;
_maxRrD_sq = _maxRrD * _maxRrD;
_norm = _flux * (_beta-1.) / (M_PI * _fluxFactor * _rD_sq);
_knorm = _flux;
_knorm2 = 1.;
dbg << "Moffat rD " << _rD << " fluxFactor " << _fluxFactor
<< " norm " << _norm << " maxR " << _maxR << std::endl;
if (std::abs(_beta-1) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_1;
else if (std::abs(_beta-1.5) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_15;
else if (std::abs(_beta-2) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_2;
else if (std::abs(_beta-2.5) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_25;
else if (std::abs(_beta-3) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_3;
else if (std::abs(_beta-3.5) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_35;
else if (std::abs(_beta-4) < this->gsparams.xvalue_accuracy)
_pow_mbeta = &SBMoffatImpl::pow_4;
else _pow_mbeta = &SBMoffatImpl::pow_gen;
if (_trunc > 0.) _kV = &SBMoffatImpl::kV_trunc;
else if (std::abs(_beta-1.5) < this->gsparams.kvalue_accuracy)
_kV = &SBMoffatImpl::kV_15;
else if (std::abs(_beta-2) < this->gsparams.kvalue_accuracy)
_kV = &SBMoffatImpl::kV_2;
else if (std::abs(_beta-2.5) < this->gsparams.kvalue_accuracy)
_kV = &SBMoffatImpl::kV_25;
else if (std::abs(_beta-3) < this->gsparams.kvalue_accuracy) {
_kV = &SBMoffatImpl::kV_3; _knorm2 /= 2.;
} else if (std::abs(_beta-3.5) < this->gsparams.kvalue_accuracy) {
_kV = &SBMoffatImpl::kV_35; _knorm2 /= 3.;
} else if (std::abs(_beta-4) < this->gsparams.kvalue_accuracy) {
_kV = &SBMoffatImpl::kV_4; _knorm2 /= 8.;
} else {
_kV = &SBMoffatImpl::kV_gen;
_knorm2 *= 4. / (std::tgamma(beta-1.) * std::pow(2.,beta));
}
_knorm *= _knorm2;
}
double SBMoffat::SBMoffatImpl::getHalfLightRadius() const
{
return _rD * std::sqrt(std::pow(1.-0.5*_fluxFactor , 1./(1.-_beta)) - 1.);
}
double SBMoffat::SBMoffatImpl::getFWHM() const
{
return _rD * 2.* std::sqrt(std::pow(2., 1./_beta)-1.);
}
double SBMoffat::SBMoffatImpl::xValue(const Position<double>& p) const
{
double rsq = (p.x*p.x + p.y*p.y)*_inv_rD_sq;
if (rsq > _maxRrD_sq) return 0.;
else return _norm * _pow_mbeta(1.+rsq, _beta);
}
// Specialized functions for x**-beta for some probably common choices for beta, which
// can be done faster than using fast_pow(x,-beta).
double SBMoffat::SBMoffatImpl::pow_1(double x, double ) { return 1./x; }
double SBMoffat::SBMoffatImpl::pow_15(double x, double ) { return 1./(x * std::sqrt(x)); }
double SBMoffat::SBMoffatImpl::pow_2(double x, double ) { return 1./(x*x); }
double SBMoffat::SBMoffatImpl::pow_25(double x, double ) { return 1./(x*x * std::sqrt(x)); }
double SBMoffat::SBMoffatImpl::pow_3(double x, double ) { return 1./(x*x*x); }
double SBMoffat::SBMoffatImpl::pow_35(double x, double ) { return 1./(x*x*x * std::sqrt(x)); }
double SBMoffat::SBMoffatImpl::pow_4(double x, double ) { double xsq=x*x; return 1./(xsq*xsq); }
double SBMoffat::SBMoffatImpl::pow_gen(double x, double beta) { return fast_pow(x,-beta); }
std::complex<double> SBMoffat::SBMoffatImpl::kValue(const Position<double>& k) const
{
double ksq = (k.x*k.x + k.y*k.y)*_rD_sq;
return _knorm * (this->*_kV)(ksq);
}
// Used by MoffatMaxKSolver
double SBMoffat::SBMoffatImpl::kV2(double ksq) const
{
return _knorm2 * (this->*_kV)(ksq);
}
double SBMoffat::SBMoffatImpl::kV_15(double ksq) const
{
double k = sqrt(ksq);
return fmath::expd(-k);
}
double SBMoffat::SBMoffatImpl::kV_2(double ksq) const
{
if (ksq == 0.) return 1.;
else {
double k = sqrt(ksq);
return math::cyl_bessel_k(1,k) * k;
}
}
double SBMoffat::SBMoffatImpl::kV_25(double ksq) const
{
double k = sqrt(ksq);
return fmath::expd(-k)*(1.+k);
}
double SBMoffat::SBMoffatImpl::kV_3(double ksq) const
{
if (ksq == 0.) return 2.;
else {
double k = sqrt(ksq);
return math::cyl_bessel_k(2,k) * ksq;
}
}
double SBMoffat::SBMoffatImpl::kV_35(double ksq) const
{
double k = sqrt(ksq);
return fmath::expd(-k)*(3.+(3.+k)*k);
}
double SBMoffat::SBMoffatImpl::kV_4(double ksq) const
{
if (ksq == 0.) return 8.;
else {
double k = sqrt(ksq);
return math::cyl_bessel_k(3,k) * k*ksq;
}
}
double SBMoffat::SBMoffatImpl::kV_gen(double ksq) const
{
if (ksq == 0.) return _flux/_knorm;
else {
double k = sqrt(ksq);
return math::cyl_bessel_k(_beta-1,k) * fast_pow(k,_beta-1);
}
}
double SBMoffat::SBMoffatImpl::kV_trunc(double ksq) const
{
setupFT();
if (ksq > _ft.argMax()) return 0.;
else return _ft(ksq);
}
template <typename T>
void SBMoffat::SBMoffatImpl::fillXImage(ImageView<T> im,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBMoffat fillXImage\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillXImageQuadrant(im,x0,dx,izero,y0,dy,jzero);
} else {
xdbg<<"Non-Quadrant\n";
const int m = im.getNCol();
const int n = im.getNRow();
T* ptr = im.getData();
const int skip = im.getNSkip();
assert(im.getStep() == 1);
x0 *= _inv_rD;
dx *= _inv_rD;
y0 *= _inv_rD;
dy *= _inv_rD;
for (int j=0; j<n; ++j,y0+=dy,ptr+=skip) {
double x = x0;
double ysq = y0*y0;
for (int i=0; i<m; ++i,x+=dx) {
double rsq = x*x + ysq;
if (rsq <= _maxRrD_sq)
*ptr++ = _norm * _pow_mbeta(1.+rsq, _beta);
else
*ptr++ = T(0);
}
}
}
}
template <typename T>
void SBMoffat::SBMoffatImpl::fillXImage(ImageView<T> im,
double x0, double dx, double dxy,
double y0, double dy, double dyx) const
{
dbg<<"SBMoffat fillXImage\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<" + j * "<<dxy<<std::endl;
dbg<<"y = "<<y0<<" + i * "<<dyx<<" + j * "<<dy<<std::endl;
const int m = im.getNCol();
const int n = im.getNRow();
T* ptr = im.getData();
const int skip = im.getNSkip();
assert(im.getStep() == 1);
x0 *= _inv_rD;
dx *= _inv_rD;
dxy *= _inv_rD;
y0 *= _inv_rD;
dy *= _inv_rD;
dyx *= _inv_rD;
for (int j=0; j<n; ++j,x0+=dxy,y0+=dy,ptr+=skip) {
double x = x0;
double y = y0;
for (int i=0; i<m; ++i,x+=dx,y+=dyx) {
double rsq = x*x + y*y;
if (rsq <= _maxRrD_sq)
*ptr++ = _norm * _pow_mbeta(1.+rsq, _beta);
else
*ptr++ = T(0);
}
}
}
template <typename T>
void SBMoffat::SBMoffatImpl::fillKImage(ImageView<std::complex<T> > im,
double kx0, double dkx, int izero,
double ky0, double dky, int jzero) const
{
dbg<<"SBMoffat fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<", izero = "<<izero<<std::endl;
dbg<<"ky = "<<ky0<<" + j * "<<dky<<", jzero = "<<jzero<<std::endl;
if (izero != 0 || jzero != 0) {
xdbg<<"Use Quadrant\n";
fillKImageQuadrant(im,kx0,dkx,izero,ky0,dky,jzero);
} else {
xdbg<<"Non-Quadrant\n";
const int m = im.getNCol();
const int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= _rD;
dkx *= _rD;
ky0 *= _rD;
dky *= _rD;
for (int j=0; j<n; ++j,ky0+=dky,ptr+=skip) {
double kx = kx0;
double kysq = ky0*ky0;
for (int i=0;i<m;++i,kx+=dkx)
*ptr++ = _knorm * (this->*_kV)(kx*kx + kysq);
}
}
}
template <typename T>
void SBMoffat::SBMoffatImpl::fillKImage(ImageView<std::complex<T> > im,
double kx0, double dkx, double dkxy,
double ky0, double dky, double dkyx) const
{
dbg<<"SBMoffat fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<" + j * "<<dkxy<<std::endl;
dbg<<"ky = "<<ky0<<" + i * "<<dkyx<<" + j * "<<dky<<std::endl;
const int m = im.getNCol();
const int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= _rD;
dkx *= _rD;
dkxy *= _rD;
ky0 *= _rD;
dky *= _rD;
dkyx *= _rD;
for (int j=0; j<n; ++j,kx0+=dkxy,ky0+=dky,ptr+=skip) {
double kx = kx0;
double ky = ky0;
for (int i=0; i<m; ++i,kx+=dkx,ky+=dkyx)
*ptr++ = _knorm * (this->*_kV)(kx*kx + ky*ky);
}
}
class MoffatMaxKSolver
{
public:
MoffatMaxKSolver(const SBMoffat::SBMoffatImpl* impl, double thresh) :
_impl(impl), _thresh(thresh) {}
double operator()(double ksq) const
{
dbg<<"Try ksq = "<<ksq<<", kv = "<<_impl->kV2(ksq)<<std::endl;
return _impl->kV2(ksq) - _thresh;
}
private:
const SBMoffat::SBMoffatImpl* _impl;
const double _thresh;
};
// Set maxK to the value where the FT is down to maxk_threshold
double SBMoffat::SBMoffatImpl::maxK() const
{
if (_maxk == 0.) {
if (_trunc == 0.) {
MoffatMaxKSolver func(this, this->gsparams.maxk_threshold);
double ksq1 = 0.;
double ksq2 = 100; // k=10 is usually close, so it makes a good starting guess.
Solve<MoffatMaxKSolver> solver(func,ksq1,ksq2);
solver.setMethod(Brent);
solver.bracketUpper();
double maxksq = solver.root();
_maxk = sqrt(maxksq);
dbg<<"Found _maxk = "<<_maxk<<std::endl;
} else {
// _maxk is determined during setupFT() as the last k value to have a
// kValue > 1.e-3.
setupFT();
}
}
return _maxk*_inv_rD;
}
// The amount of flux missed in a circle of radius pi/stepk should be at
// most folding_threshold of the flux.
double SBMoffat::SBMoffatImpl::stepK() const
{
dbg<<"Find Moffat stepK\n";
dbg<<"beta = "<<_beta<<std::endl;
if (_stepk == 0.) {
// The fractional flux out to radius R is (if not truncated)
// 1 - (1+R^2)^(1-beta)
// So solve (1+R^2)^(1-beta) = folding_threshold
if (_beta <= 1.1) {
// Then flux never converges (or nearly so), so just use truncation radius
_stepk = M_PI / _maxR;
} else {
// Ignore the 1 in (1+R^2), so approximately:
double R = std::pow(this->gsparams.folding_threshold, 0.5/(1.-_beta)) * _rD;
dbg<<"R = "<<R<<std::endl;
// If it is truncated at less than this, drop to that value.
if (R > _maxR) R = _maxR;
dbg<<"_maxR = "<<_maxR<<std::endl;
dbg<<"R => "<<R<<std::endl;
dbg<<"stepk = "<<(M_PI/R)<<std::endl;
// Make sure it is at least 5 hlr
R = std::max(R,gsparams.stepk_minimum_hlr*getHalfLightRadius());
_stepk = M_PI / R;
}
}
return _stepk;
}
// Integrand class for the Hankel transform of Moffat
class MoffatIntegrand : public std::function<double(double)>
{
public:
MoffatIntegrand(double beta, double (*pb)(double, double)) :
_beta(beta), _pow_mbeta(pb) {}
double operator()(double r) const
{ return _pow_mbeta(1.+r*r, _beta); }
private:
double _beta;
double (*_pow_mbeta)(double x, double beta);
};
void SBMoffat::SBMoffatImpl::setupFT() const
{
assert(_trunc > 0.);
if (_ft.finalized()) return;
// Do a Hankel transform and store the results in a lookup table.
double prefactor = 2. * (_beta-1.) / (_fluxFactor);
// Along the way, find the last k that has a kValue > 1.e-3
double maxk_val = this->gsparams.maxk_threshold;
dbg<<"Looking for maxk_val = "<<maxk_val<<std::endl;
// Keep going until at least 5 in a row have kvalues below kvalue_accuracy.
// (It's oscillatory, so want to make sure not to stop at a zero crossing.)
// We use a cubic spline for the interpolation, which has an error of O(h^4) max(f'''').
// I have no idea what range the fourth derivative can take for the hankel transform,
// so let's take the completely arbitrary value of 10. (This value was found to be
// conservative for Sersic, but I haven't investigated here.)
// 10 h^4 <= kvalue_accuracy
// h = (kvalue_accuracy/10)^0.25
double dk = gsparams.table_spacing * sqrt(sqrt(gsparams.kvalue_accuracy / 10.));
dbg<<"dk = "<<dk<<std::endl;
int n_below_thresh = 0;
MoffatIntegrand I(_beta, _pow_mbeta);
// Don't go past k = 50
for(double k=0.; k < 50; k += dk) {
double val;
val = math::hankel_trunc(I, k, 0., _maxRrD,
this->gsparams.integration_relerr,
this->gsparams.integration_abserr);
val *= prefactor;
xdbg<<"ft("<<k<<") = "<<val<<std::endl;
_ft.addEntry(k*k, val);
if (std::abs(val) > maxk_val) _maxk = k;
if (std::abs(val) > this->gsparams.kvalue_accuracy) n_below_thresh = 0;
else ++n_below_thresh;
if (n_below_thresh == 5) break;
}
_ft.finalize();
dbg<<"maxk = "<<_maxk<<std::endl;
xdbg<<"f(maxk) = "<<_ft(_maxk*_maxk)<<std::endl;
// Tweak the maxk value to be a bit more accurate.
// We know the real maxk should be between _maxk and _maxk+dk
double k1 = _maxk;
double k2 = _maxk + dk;
if (k2 < 50) {
double f1 = std::abs(_ft(k1*k1));
double f2 = std::abs(_ft(k2*k2));
xdbg<<"k1, f1 = "<<k1<<" "<<f1<<std::endl;
xdbg<<"k2, f2 = "<<k2<<" "<<f2<<std::endl;
_maxk = (k1*(f2-maxk_val) + k2*(maxk_val-f1)) / (f2-f1);
dbg<<"maxk => "<<_maxk<<std::endl;
xdbg<<"f(maxk) = "<<_ft(_maxk*_maxk)<<std::endl;
}
}
void SBMoffat::SBMoffatImpl::shoot(PhotonArray& photons, UniformDeviate ud) const
{
const int N = photons.size();
dbg<<"Moffat shoot: N = "<<N<<std::endl;
dbg<<"Target flux = "<<getFlux()<<std::endl;
// Moffat has analytic inverse-cumulative-flux function.
double fluxPerPhoton = _flux/N;
for (int i=0; i<N; i++) {
#ifdef USE_COS_SIN
// First get a point uniformly distributed on unit circle
double theta = 2.*M_PI*ud();
double rsq = ud(); // cumulative dist function P(<r) = r^2 for unit circle
double sint,cost;
math::sincos(theta, sint, cost);
// Then map radius to the Moffat flux distribution
double newRsq = fast_pow(1. - rsq * _fluxFactor, 1. / (1. - _beta)) - 1.;
double rFactor = _rD * std::sqrt(newRsq);
photons.setPhoton(i, rFactor*cost, rFactor*sint, fluxPerPhoton);
#else
// First get a point uniformly distributed on unit circle
double xu, yu, rsq;
do {
xu = 2.*ud()-1.;
yu = 2.*ud()-1.;
rsq = xu*xu+yu*yu;
} while (rsq>=1. || rsq==0.);
// Then map radius to the Moffat flux distribution
double newRsq = fast_pow(1. - rsq * _fluxFactor, 1. / (1. - _beta)) - 1.;
double rFactor = _rD * std::sqrt(newRsq / rsq);
photons.setPhoton(i, rFactor*xu, rFactor*yu, fluxPerPhoton);
#endif
}
dbg<<"Moffat Realized flux = "<<photons.getTotalFlux()<<std::endl;
}
}