-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathSBTransform.cpp
992 lines (918 loc) · 43.8 KB
/
SBTransform.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/* -*- c++ -*-
* Copyright (c) 2012-2023 by the GalSim developers team on GitHub
* https://github.com/GalSim-developers
*
* This file is part of GalSim: The modular galaxy image simulation toolkit.
* https://github.com/GalSim-developers/GalSim
*
* GalSim is free software: redistribution and use in source and binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions, and the disclaimer given in the accompanying LICENSE
* file.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the disclaimer given in the documentation
* and/or other materials provided with the distribution.
*/
//#define DEBUGLOGGING
#include "SBTransform.h"
#include "SBTransformImpl.h"
#include "fmath/fmath.hpp" // Use their compiler checks for the right SSE include.
namespace galsim {
SBTransform::SBTransform(const SBProfile& adaptee, const double* jac,
const Position<double>& cen, double ampScaling,
const GSParams& gsparams) :
SBProfile(new SBTransformImpl(adaptee,jac,cen,ampScaling,gsparams)) {}
SBTransform::SBTransform(const SBTransform& rhs) : SBProfile(rhs) {}
SBTransform::~SBTransform() {}
SBProfile SBTransform::getObj() const
{
assert(dynamic_cast<const SBTransformImpl*>(_pimpl.get()));
return static_cast<const SBTransformImpl&>(*_pimpl).getObj();
}
void SBTransform::getJac(double& mA, double& mB, double& mC, double& mD) const
{
assert(dynamic_cast<const SBTransformImpl*>(_pimpl.get()));
return static_cast<const SBTransformImpl&>(*_pimpl).getJac(mA,mB,mC,mD);
}
Position<double> SBTransform::getOffset() const
{
assert(dynamic_cast<const SBTransformImpl*>(_pimpl.get()));
return static_cast<const SBTransformImpl&>(*_pimpl).getOffset();
}
double SBTransform::getFluxScaling() const
{
assert(dynamic_cast<const SBTransformImpl*>(_pimpl.get()));
return static_cast<const SBTransformImpl&>(*_pimpl).getFluxScaling();
}
SBTransform::SBTransformImpl::SBTransformImpl(
const SBProfile& adaptee, const double* jac,
const Position<double>& cen, double ampScaling,
const GSParams& gsparams) :
SBProfileImpl(gsparams),
_adaptee(adaptee), _cen(cen), _ampScaling(ampScaling),
_maxk(0.), _stepk(0.), _xmin(0.), _xmax(0.), _ymin(0.), _ymax(0.),
_kValue(0), _kValueNoPhase(0)
{
bool unit = !jac;
if (jac) {
_mA = jac[0];
_mB = jac[1];
_mC = jac[2];
_mD = jac[3];
} else {
_mA = 1.;
_mB = 0.;
_mC = 0.;
_mD = 1.;
}
dbg<<"Start TransformImpl\n";
dbg<<"matrix = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
dbg<<"cen = "<<_cen<<", ampScaling = "<<_ampScaling<<std::endl;
// First check if our adaptee is really another SBTransform:
assert(GetImpl(_adaptee));
const SBTransformImpl* sbt = dynamic_cast<const SBTransformImpl*>(GetImpl(_adaptee));
dbg<<"sbt = "<<sbt<<std::endl;
if (sbt) {
dbg<<"wrapping another transformation.\n";
// We are transforming something that's already a transformation.
dbg<<"this transformation = "<<
_mA<<','<<_mB<<','<<_mC<<','<<_mD<<','<<
_cen<<','<<_ampScaling<<std::endl;
dbg<<"adaptee transformation = "<<
sbt->_mA<<','<<sbt->_mB<<','<<sbt->_mC<<','<<sbt->_mD<<','<<
sbt->_cen<<','<<sbt->_ampScaling<<std::endl;
dbg<<"adaptee getFlux = "<<_adaptee.getFlux()<<std::endl;
// We are transforming something that's already a transformation.
// So just compound the affine transformaions
// New matrix is product (M_this) * (M_old)
double mA = _mA; double mB=_mB; double mC=_mC; double mD=_mD;
_cen += Position<double>(mA*sbt->_cen.x + mB*sbt->_cen.y,
mC*sbt->_cen.x + mD*sbt->_cen.y);
_mA = mA*sbt->_mA + mB*sbt->_mC;
_mB = mA*sbt->_mB + mB*sbt->_mD;
_mC = mC*sbt->_mA + mD*sbt->_mC;
_mD = mC*sbt->_mB + mD*sbt->_mD;
unit = false;
_ampScaling *= sbt->_ampScaling;
dbg<<"this transformation => "<<
_mA<<','<<_mB<<','<<_mC<<','<<_mD<<','<<
_cen<<','<<_ampScaling<<std::endl;
_adaptee = sbt->_adaptee;
} else {
dbg<<"wrapping a non-transformation.\n";
dbg<<"this transformation = "<<
_mA<<','<<_mB<<','<<_mC<<','<<_mD<<','<<
_cen<<','<<_ampScaling<<std::endl;
}
_zeroCen = _cen.x == 0. && _cen.y == 0.;
// It will be reasonably common to have an identity matrix (for just
// a flux scaling and/or shift) for (A,B,C,D). If so, we can use simpler
// versions of fwd and inv:
if (unit) {
dbg<<"Using identity functions for fwd and inv\n";
_fwd = &SBTransform::SBTransformImpl::_ident;
_inv = &SBTransform::SBTransformImpl::_ident;
_absdet = _invdet = 1.;
_fluxScaling = _ampScaling;
} else {
dbg<<"Using normal fwd and inv\n";
_fwd = &SBTransform::SBTransformImpl::_fwd_normal;
_inv = &SBTransform::SBTransformImpl::_inv_normal;
// Calculate some derived quantities:
double det = _mA*_mD-_mB*_mC;
assert(det != 0); // Checked in python layer
_absdet = std::abs(det);
_invdet = 1./det;
// The scale factor for the flux is absdet * ampScaling.
_fluxScaling = _absdet * _ampScaling;
}
xdbg<<"Transformation init\n";
xdbg<<"matrix = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
xdbg<<"_cen = "<<_cen<<std::endl;
xdbg<<"_invdet = "<<_invdet<<std::endl;
xdbg<<"_absdet = "<<_absdet<<std::endl;
xdbg<<"_ampScaling = "<<_ampScaling<<std::endl;
xdbg<<"_fluxScaling -> "<<_fluxScaling<<std::endl;
}
double SBTransform::SBTransformImpl::maxK() const
{
// The adaptee's maxk can be slow (e.g. high-n Sersic), so delay this calculation
// until we actually need it.
if (_maxk == 0.) {
stepK(); // Make sure _major, _minor are set.
_maxk = _adaptee.maxK() / _minor;
}
return _maxk;
}
double SBTransform::SBTransformImpl::stepK() const
{
if (_stepk == 0.) {
double h1 = hypot( _mA+_mD, _mB-_mC);
double h2 = hypot( _mA-_mD, _mB+_mC);
_major = 0.5*std::abs(h1+h2);
_minor = 0.5*std::abs(h1-h2);
if (_major < _minor) std::swap(_major,_minor);
_stepk = _adaptee.stepK() / _major;
// If we have a shift, we need to further modify stepk
// stepk = Pi/R
// R <- R + |shift|
// stepk <- Pi/(Pi/stepk + |shift|)
if (_cen.x != 0. || _cen.y != 0.) {
double shift = sqrt( _cen.x*_cen.x + _cen.y*_cen.y );
dbg<<"stepk from adaptee = "<<_stepk<<std::endl;
_stepk = M_PI / (M_PI/_stepk + shift);
dbg<<"shift = "<<shift<<", stepk -> "<<_stepk<<std::endl;
}
}
return _stepk;
}
void SBTransform::SBTransformImpl::setupRanges() const
{
if (_xmin != 0. || _xmax != 0.) return;
// Calculate the values for getXRange and getYRange:
if (_adaptee.isAxisymmetric()) {
// The original is a circle, so first get its radius.
_adaptee.getXRange(_xmin,_xmax,_xsplits);
if (_xmax == integ::MOCK_INF) {
// Then these are correct, and use +- inf for y range too.
_ymin = -integ::MOCK_INF;
_ymax = integ::MOCK_INF;
} else {
double R = _xmax;
// The transformation takes each point on the circle to the following new coordinates:
// (x,y) -> (A*x + B*y + x0 , C*x + D*y + y0)
// Using x = R cos(t) and y = R sin(t), we can find the minimum wrt t as:
// xmax = R sqrt(A^2 + B^2) + x0
// xmin = -R sqrt(A^2 + B^2) + x0
// ymax = R sqrt(C^2 + D^2) + y0
// ymin = -R sqrt(C^2 + D^2) + y0
double AApBB = _mA*_mA + _mB*_mB;
double sqrtAApBB = sqrt(AApBB);
double temp = sqrtAApBB * R;
_xmin = -temp + _cen.x;
_xmax = temp + _cen.x;
double CCpDD = _mC*_mC + _mD*_mD;
double sqrtCCpDD = sqrt(CCpDD);
temp = sqrt(CCpDD) * R;
_ymin = -temp + _cen.y;
_ymax = temp + _cen.y;
_ysplits.resize(_xsplits.size());
for (size_t k=0;k<_xsplits.size();++k) {
// The split points work the same way. Scale them by the same factor we
// scaled the R value above, then add _cen.x or _cen.y.
double split = _xsplits[k];
xxdbg<<"Adaptee split at "<<split<<std::endl;
_xsplits[k] = sqrtAApBB * split + _cen.x;
_ysplits[k] = sqrtCCpDD * split + _cen.y;
xxdbg<<"-> x,y splits at "<<_xsplits[k]<<" "<<_ysplits[k]<<std::endl;
}
// Now a couple of calculations that get reused in getYRangeX(x,yminymax):
_coeff_b = (_mA*_mC + _mB*_mD) / AApBB;
_coeff_c = CCpDD / AApBB;
_coeff_c2 = _absdet*_absdet / AApBB;
xxdbg<<"adaptee is axisymmetric.\n";
xxdbg<<"adaptees maxR = "<<R<<std::endl;
xxdbg<<"xmin..xmax = "<<_xmin<<" ... "<<_xmax<<std::endl;
xxdbg<<"ymin..ymax = "<<_ymin<<" ... "<<_ymax<<std::endl;
}
} else {
// Apply the transformation to each of the four corners of the original
// and find the minimum and maximum.
double xmin_1, xmax_1;
std::vector<double> xsplits0;
_adaptee.getXRange(xmin_1,xmax_1,xsplits0);
double ymin_1, ymax_1;
std::vector<double> ysplits0;
_adaptee.getYRange(ymin_1,ymax_1,ysplits0);
// Note: This doesn't explicitly check for MOCK_INF values.
// It shouldn't be a problem, since the integrator will still treat
// large values near MOCK_INF as infinity, but it just means that
// the following calculations might be wasted flops.
Position<double> bl = fwd(Position<double>(xmin_1,ymin_1));
Position<double> br = fwd(Position<double>(xmax_1,ymin_1));
Position<double> tl = fwd(Position<double>(xmin_1,ymax_1));
Position<double> tr = fwd(Position<double>(xmax_1,ymax_1));
_xmin = std::min(std::min(std::min(bl.x,br.x),tl.x),tr.x) + _cen.x;
_xmax = std::max(std::max(std::max(bl.x,br.x),tl.x),tr.x) + _cen.x;
_ymin = std::min(std::min(std::min(bl.y,br.y),tl.y),tr.y) + _cen.y;
_ymax = std::max(std::max(std::max(bl.y,br.y),tl.y),tr.y) + _cen.y;
xxdbg<<"adaptee is not axisymmetric.\n";
xxdbg<<"adaptees x range = "<<xmin_1<<" ... "<<xmax_1<<std::endl;
xxdbg<<"adaptees y range = "<<ymin_1<<" ... "<<ymax_1<<std::endl;
xxdbg<<"Corners are: bl = "<<bl<<std::endl;
xxdbg<<" br = "<<br<<std::endl;
xxdbg<<" tl = "<<tl<<std::endl;
xxdbg<<" tr = "<<tr<<std::endl;
xxdbg<<"xmin..xmax = "<<_xmin<<" ... "<<_xmax<<std::endl;
xxdbg<<"ymin..ymax = "<<_ymin<<" ... "<<_ymax<<std::endl;
if (bl.x + _cen.x > _xmin && bl.x + _cen.x < _xmax) {
xxdbg<<"X Split from bl.x = "<<bl.x+_cen.x<<std::endl;
_xsplits.push_back(bl.x+_cen.x);
}
if (br.x + _cen.x > _xmin && br.x + _cen.x < _xmax) {
xxdbg<<"X Split from br.x = "<<br.x+_cen.x<<std::endl;
_xsplits.push_back(br.x+_cen.x);
}
if (tl.x + _cen.x > _xmin && tl.x + _cen.x < _xmax) {
xxdbg<<"X Split from tl.x = "<<tl.x+_cen.x<<std::endl;
_xsplits.push_back(tl.x+_cen.x);
}
if (tr.x + _cen.x > _xmin && tr.x + _cen.x < _xmax) {
xxdbg<<"X Split from tr.x = "<<tr.x+_cen.x<<std::endl;
_xsplits.push_back(tr.x+_cen.x);
}
if (bl.y + _cen.y > _ymin && bl.y + _cen.y < _ymax) {
xxdbg<<"Y Split from bl.y = "<<bl.y+_cen.y<<std::endl;
_ysplits.push_back(bl.y+_cen.y);
}
if (br.y + _cen.y > _ymin && br.y + _cen.y < _ymax) {
xxdbg<<"Y Split from br.y = "<<br.y+_cen.y<<std::endl;
_ysplits.push_back(br.y+_cen.y);
}
if (tl.y + _cen.y > _ymin && tl.y + _cen.y < _ymax) {
xxdbg<<"Y Split from tl.y = "<<tl.y+_cen.y<<std::endl;
_ysplits.push_back(tl.y+_cen.y);
}
if (tr.y + _cen.y > _ymin && tr.y + _cen.y < _ymax) {
xxdbg<<"Y Split from tr.y = "<<tr.y+_cen.y<<std::endl;
_ysplits.push_back(tr.y+_cen.y);
}
// If the adaptee has any splits, try to propagate those up
for(size_t k=0;k<xsplits0.size();++k) {
xxdbg<<"Adaptee xsplit at "<<xsplits0[k]<<std::endl;
Position<double> bx = fwd(Position<double>(xsplits0[k],ymin_1));
Position<double> tx = fwd(Position<double>(xsplits0[k],ymax_1));
if (bx.x + _cen.x > _xmin && bx.x + _cen.x < _xmax) {
xxdbg<<"X Split from bx.x = "<<bx.x+_cen.x<<std::endl;
_xsplits.push_back(bx.x+_cen.x);
}
if (tx.x + _cen.x > _xmin && tx.x + _cen.x < _xmax) {
xxdbg<<"X Split from tx.x = "<<tx.x+_cen.x<<std::endl;
_xsplits.push_back(tx.x+_cen.x);
}
if (bx.y + _cen.y > _ymin && bx.y + _cen.y < _ymax) {
xxdbg<<"Y Split from bx.y = "<<bx.y+_cen.y<<std::endl;
_ysplits.push_back(bx.y+_cen.y);
}
if (tx.y + _cen.y > _ymin && tx.y + _cen.y < _ymax) {
xxdbg<<"Y Split from tx.y = "<<tx.y+_cen.y<<std::endl;
_ysplits.push_back(tx.y+_cen.y);
}
}
for(size_t k=0;k<ysplits0.size();++k) {
xxdbg<<"Adaptee ysplit at "<<ysplits0[k]<<std::endl;
Position<double> yl = fwd(Position<double>(xmin_1,ysplits0[k]));
Position<double> yr = fwd(Position<double>(xmax_1,ysplits0[k]));
if (yl.x + _cen.x > _xmin && yl.x + _cen.x < _xmax) {
xxdbg<<"X Split from tl.x = "<<tl.x+_cen.x<<std::endl;
_xsplits.push_back(yl.x+_cen.x);
}
if (yr.x + _cen.x > _xmin && yr.x + _cen.x < _xmax) {
xxdbg<<"X Split from yr.x = "<<yr.x+_cen.x<<std::endl;
_xsplits.push_back(yr.x+_cen.x);
}
if (yl.y + _cen.y > _ymin && yl.y + _cen.y < _ymax) {
xxdbg<<"Y Split from yl.y = "<<yl.y+_cen.y<<std::endl;
_ysplits.push_back(yl.y+_cen.y);
}
if (yr.y + _cen.y > _ymin && yr.y + _cen.y < _ymax) {
xxdbg<<"Y Split from yr.y = "<<yr.y+_cen.y<<std::endl;
_ysplits.push_back(yr.y+_cen.y);
}
}
}
}
void SBTransform::SBTransformImpl::getXRange(
double& xmin, double& xmax, std::vector<double>& splits) const
{
setupRanges();
xmin = _xmin; xmax = _xmax;
splits.insert(splits.end(),_xsplits.begin(),_xsplits.end());
}
void SBTransform::SBTransformImpl::getYRange(
double& ymin, double& ymax, std::vector<double>& splits) const
{
setupRanges();
ymin = _ymin; ymax = _ymax;
splits.insert(splits.end(),_ysplits.begin(),_ysplits.end());
}
void SBTransform::SBTransformImpl::getYRangeX(
double x, double& ymin, double& ymax, std::vector<double>& splits) const
{
setupRanges();
xxdbg<<"Transformation getYRangeX for x = "<<x<<std::endl;
if (_adaptee.isAxisymmetric()) {
std::vector<double> splits0;
_adaptee.getYRange(ymin,ymax,splits0);
if (ymax == integ::MOCK_INF) return;
double R = ymax;
// The circlue with radius R is mapped onto an ellipse with (x,y) given by:
// x = A R cos(t) + B R sin(t) + x0
// y = C R cos(t) + D R sin(t) + y0
//
// Or equivalently:
// (A^2+B^2) (y-y0)^2 - 2(AC+BD) (x-x0)(y-y0) + (C^2+D^2) (x-x0)^2 = R^2 (AD-BC)^2
//
// Given a particular value for x, we solve the latter equation for the
// corresponding range for y.
// y^2 - 2 b y = c
// -> y^2 - 2b y = c
// (y - b)^2 = c + b^2
// y = b +- sqrt(c + b^2)
double b = _coeff_b * (x-_cen.x);
double c = _coeff_c2 * R*R - _coeff_c * (x-_cen.x) * (x-_cen.x);
double d = sqrt(c + b*b);
ymax = b + d + _cen.y;
ymin = b - d + _cen.y;
for (size_t k=0;k<splits0.size();++k) if (splits0[k] >= 0.) {
double r = splits0[k];
double c = _coeff_c2 * r*r - _coeff_c * (x-_cen.x) * (x-_cen.x);
double d = sqrt(c+b*b);
splits.push_back(b + d + _cen.y);
splits.push_back(b - d + _cen.y);
}
xxdbg<<"Axisymmetric adaptee with R = "<<R<<std::endl;
xxdbg<<"ymin .. ymax = "<<ymin<<" ... "<<ymax<<std::endl;
} else {
// There are 4 lines to check for where they intersect the given x.
// Start with the adaptee's given ymin.
// This line is transformed onto the line:
// (x',ymin) -> ( A x' + B ymin + x0 , C x' + D ymin + y0 )
// x' = (x - x0 - B ymin) / A
// y = C x' + D ymin + y0
// = C (x - x0 - B ymin) / A + D ymin + y0
// The top line is analagous for ymax instead of ymin.
//
// The left line is transformed as:
// (xmin,y) -> ( A xmin + B y' + x0 , C xmin + D y' + y0 )
// y' = (x - x0 - A xmin) / B
// y = C xmin + D (x - x0 - A xmin) / B + y0
// And again, the right line is analgous.
//
// We also need to check for A or B = 0, since then only one pair of lines is
// relevant.
xxdbg<<"Non-axisymmetric adaptee\n";
if (_mA == 0.) {
xxdbg<<"_mA == 0:\n";
double xmin_1, xmax_1;
std::vector<double> xsplits0;
_adaptee.getXRange(xmin_1,xmax_1,xsplits0);
xxdbg<<"xmin_1, xmax_1 = "<<xmin_1<<','<<xmax_1<<std::endl;
ymin = _mC * xmin_1 + _mD * (x - _cen.x - _mA*xmin_1) / _mB + _cen.y;
ymax = _mC * xmax_1 + _mD * (x - _cen.x - _mA*xmax_1) / _mB + _cen.y;
if (ymax < ymin) std::swap(ymin,ymax);
for(size_t k=0;k<xsplits0.size();++k) {
double xx = xsplits0[k];
splits.push_back(_mC * xx + _mD * (x - _cen.x - _mA*xx) / _mB + _cen.y);
}
} else if (_mB == 0.) {
xxdbg<<"_mB == 0:\n";
double ymin_1, ymax_1;
std::vector<double> ysplits0;
_adaptee.getYRange(ymin_1,ymax_1,ysplits0);
xxdbg<<"ymin_1, ymax_1 = "<<ymin_1<<','<<ymax_1<<std::endl;
ymin = _mC * (x - _cen.x - _mB*ymin_1) / _mA + _mD*ymin_1 + _cen.y;
ymax = _mC * (x - _cen.x - _mB*ymax_1) / _mA + _mD*ymax_1 + _cen.y;
if (ymax < ymin) std::swap(ymin,ymax);
for(size_t k=0;k<ysplits0.size();++k) {
double yy = ysplits0[k];
splits.push_back(_mC * (x - _cen.x - _mB*yy) / _mA + _mD*yy + _cen.y);
}
} else {
xxdbg<<"_mA,B != 0:\n";
double ymin_1, ymax_1;
std::vector<double> xsplits0;
_adaptee.getYRange(ymin_1,ymax_1,xsplits0);
xxdbg<<"ymin_1, ymax_1 = "<<ymin_1<<','<<ymax_1<<std::endl;
ymin = _mC * (x - _cen.x - _mB*ymin_1) / _mA + _mD*ymin_1 + _cen.y;
ymax = _mC * (x - _cen.x - _mB*ymax_1) / _mA + _mD*ymax_1 + _cen.y;
xxdbg<<"From top and bottom: ymin,ymax = "<<ymin<<','<<ymax<<std::endl;
if (ymax < ymin) std::swap(ymin,ymax);
double xmin_1, xmax_1;
std::vector<double> ysplits0;
_adaptee.getXRange(xmin_1,xmax_1,ysplits0);
xxdbg<<"xmin_1, xmax_1 = "<<xmin_1<<','<<xmax_1<<std::endl;
ymin_1 = _mC * xmin_1 + _mD * (x - _cen.x - _mA*xmin_1) / _mB + _cen.y;
ymax_1 = _mC * xmax_1 + _mD * (x - _cen.x - _mA*xmax_1) / _mB + _cen.y;
xxdbg<<"From left and right: ymin,ymax = "<<ymin_1<<','<<ymax_1<<std::endl;
if (ymax_1 < ymin_1) std::swap(ymin_1,ymax_1);
if (ymin_1 > ymin) ymin = ymin_1;
if (ymax_1 < ymax) ymax = ymax_1;
for(size_t k=0;k<ysplits0.size();++k) {
double yy = ysplits0[k];
splits.push_back(_mC * (x - _cen.x - _mB*yy) / _mA + _mD*yy + _cen.y);
}
for(size_t k=0;k<xsplits0.size();++k) {
double xx = xsplits0[k];
splits.push_back(_mC * xx + _mD * (x - _cen.x - _mA*xx) / _mB + _cen.y);
}
}
xxdbg<<"ymin .. ymax = "<<ymin<<" ... "<<ymax<<std::endl;
}
}
double SBTransform::SBTransformImpl::xValue(const Position<double>& p) const
{ return _adaptee.xValue(inv(p-_cen)) * _ampScaling; }
std::complex<double> SBTransform::SBTransformImpl::kValue(const Position<double>& k) const
{
if (!_kValue) {
// Figure out which function we need for kValue and kValueNoPhase
if (std::abs(_fluxScaling-1.) < this->gsparams.kvalue_accuracy) {
xdbg<<"fluxScaling = "<<_fluxScaling<<" = 1, so use NoDet version.\n";
_kValueNoPhase = &SBTransform::SBTransformImpl::_kValueNoPhaseNoDet;
} else {
xdbg<<"fluxScaling = "<<_fluxScaling<<" != 1, so use WithDet version.\n";
_kValueNoPhase = &SBTransform::SBTransformImpl::_kValueNoPhaseWithDet;
}
if (_zeroCen) {
_kValue = _kValueNoPhase;
} else {
_kValue = &SBTransform::SBTransformImpl::_kValueWithPhase;
}
}
return _kValue(_adaptee,fwdT(k),_fluxScaling,k,_cen);
}
std::complex<double> SBTransform::SBTransformImpl::kValueNoPhase(
const Position<double>& k) const
{ return _kValueNoPhase(_adaptee,fwdT(k),_fluxScaling,k,_cen); }
std::complex<double> SBTransform::SBTransformImpl::_kValueNoPhaseNoDet(
const SBProfile& adaptee, const Position<double>& fwdTk, double fluxScaling,
const Position<double>& , const Position<double>& )
{ return adaptee.kValue(fwdTk); }
std::complex<double> SBTransform::SBTransformImpl::_kValueNoPhaseWithDet(
const SBProfile& adaptee, const Position<double>& fwdTk, double fluxScaling,
const Position<double>& , const Position<double>& )
{ return fluxScaling * adaptee.kValue(fwdTk); }
std::complex<double> SBTransform::SBTransformImpl::_kValueWithPhase(
const SBProfile& adaptee, const Position<double>& fwdTk, double fluxScaling,
const Position<double>& k, const Position<double>& cen)
{ return adaptee.kValue(fwdTk) * std::polar(fluxScaling , -k.x*cen.x-k.y*cen.y); }
// A helper class for doing the inner loops in the below fill*Image functions.
// This lets us do type-specific optimizations on just this portion.
// First the normal (legible) version that we use if there is no SSE support.
template <typename T>
struct InnerLoopHelper
{
static inline void phaseloop_1d(std::complex<T>*& ptr, const std::complex<T>* kxit,
int m, const std::complex<T>& kyflux)
{
for (; m; --m)
*ptr++ *= *kxit++ * kyflux;
}
};
#ifdef __SSE__
template <>
struct InnerLoopHelper<float>
{
static inline void phaseloop_1d(std::complex<float>*& ptr, const std::complex<float>* kxit,
int m, const std::complex<float>& kyflux)
{
// First get to an aligned value
for (; m && !IsAligned(ptr); --m)
*ptr++ *= *kxit++ * kyflux;
int m2 = m>>1;
int ma = m2<<1;
m -= ma;
// Do 2 at a time as far as possible
if (m2) {
const float kyfr = kyflux.real();
const float kyfi = kyflux.imag();
const __m128 mkyfr = _mm_set1_ps(kyfr);
const __m128 mkyfi = _mm_set_ps(kyfi, -kyfi, kyfi, -kyfi);
const __m128 mneg = _mm_set_ps(1, -1, 1, -1);
do {
// Separate out calculation into components
// z = u * v
// zr = ur * vr - ui * vi
// zi = ur * vi + ui * vr
// Do this twice, since we have two complex products
__m128 mkx = _mm_loadu_ps(reinterpret_cast<const float*>(kxit));
kxit += 2;
__m128 mp = _mm_load_ps(reinterpret_cast<float*>(ptr));
// For now, u is kyf, v is kx, z* are temporaries
__m128 mvir = _mm_shuffle_ps(mkx, mkx, _MM_SHUFFLE(2,3,0,1)); // (vi, vr)
__m128 mz1 = _mm_mul_ps(mkyfr, mkx); // (ur * vr, ur * vi)
__m128 mz2 = _mm_mul_ps(mkyfi, mvir); // (-ui * vi, ui * vr)
__m128 mz = _mm_add_ps(mz1, mz2); // (ur vr - ui vi, ur vi + ui vr)
// Repeat taking z as u and p as v
mvir = _mm_shuffle_ps(mp, mp, _MM_SHUFFLE(2,3,0,1)); // (vi, vr)
__m128 mur = _mm_shuffle_ps(mz, mz, _MM_SHUFFLE(2,2,0,0)); // (ur, ur)
__m128 mui = _mm_shuffle_ps(mz, mz, _MM_SHUFFLE(3,3,1,1)); // (ui, ui)
mui = _mm_mul_ps(mneg, mui); // (-ui, ui)
mz1 = _mm_mul_ps(mur, mp); // (ur * vr, ur * vi)
mz2 = _mm_mul_ps(mui, mvir); // (-ui * vi, ui * vr)
mz = _mm_add_ps(mz1, mz2); // (ur vr - ui vi, ur vi + ui vr)
_mm_store_ps(reinterpret_cast<float*>(ptr), mz);
ptr += 2;
} while (--m2);
}
// Finally finish up the last one, if any
if (m) {
*ptr++ *= *kxit++ * kyflux;
}
}
};
#endif
#ifdef __SSE2__
template <>
struct InnerLoopHelper<double>
{
static inline void phaseloop_1d(std::complex<double>*& ptr,
const std::complex<double>* kxit,
int m, const std::complex<double>& kyflux)
{
// If not aligned, do the normal loop. (Should be rare.)
if (!IsAligned(ptr)) {
for (; m; --m)
*ptr++ *= *kxit++ * kyflux;
return;
}
const double kyfr = kyflux.real();
const double kyfi = kyflux.imag();
const __m128d mkyfr = _mm_set1_pd(kyfr);
const __m128d mkyfi = _mm_set_pd(kyfi, -kyfi);
const __m128d mneg = _mm_set_pd(1, -1);
for (; m; --m) {
// Separate out calculation into components
// z = u * v
// zr = ur * vr - ui * vi
// zi = ur * vi + ui * vr
// Do this twice, since we have two complex products
__m128d mkx = _mm_loadu_pd(reinterpret_cast<const double*>(kxit++));
__m128d mp = _mm_load_pd(reinterpret_cast<double*>(ptr));
// For now, u is kyf, v is kx, z* are temporaries
__m128d mvir = _mm_shuffle_pd(mkx, mkx, _MM_SHUFFLE2(0,1)); // (vi, vr)
__m128d mz1 = _mm_mul_pd(mkyfr, mkx); // (ur * vr, ur * vi)
__m128d mz2 = _mm_mul_pd(mkyfi, mvir); // (-ui * vi, ui * vr)
__m128d mz = _mm_add_pd(mz1, mz2); // (ur vr - ui vi, ur vi + ui vr)
// Repeat taking z as u and p as v
mvir = _mm_shuffle_pd(mp, mp, _MM_SHUFFLE2(0,1)); // (vi, vr)
__m128d mur = _mm_shuffle_pd(mz, mz, _MM_SHUFFLE2(0,0)); // (ur, ur)
__m128d mui = _mm_shuffle_pd(mz, mz, _MM_SHUFFLE2(1,1)); // (ui, ui)
mui = _mm_mul_pd(mneg, mui); // (-ui, ui)
mz1 = _mm_mul_pd(mur, mp); // (ur * vr, ur * vi)
mz2 = _mm_mul_pd(mui, mvir); // (-ui * vi, ui * vr)
mz = _mm_add_pd(mz1, mz2); // (ur vr - ui vi, ur vi + ui vr)
_mm_store_pd(reinterpret_cast<double*>(ptr++), mz);
}
}
};
#endif
template <typename T>
void SBTransform::SBTransformImpl::fillXImage(ImageView<T> im,
double x0, double dx, int izero,
double y0, double dy, int jzero) const
{
dbg<<"SBTransform fillXImage\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<", izero = "<<izero<<std::endl;
dbg<<"y = "<<y0<<" + j * "<<dy<<", jzero = "<<jzero<<std::endl;
dbg<<"A,B,C,D = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
dbg<<"cen = "<<_cen<<", zerocen = "<<_zeroCen<<std::endl;
dbg<<"fluxScaling = "<<_fluxScaling<<", invdet = "<<_invdet<<std::endl;
dbg<<"ampScaling = "<<_ampScaling<<std::endl;
const int m = im.getNCol();
const int n = im.getNRow();
// Subtract cen
if (!_zeroCen) {
x0 -= _cen.x;
y0 -= _cen.y;
// Check if the new center falls on an integer index.
// 0 = x0 + iz * dx
// 0 = y0 + jz * dy
xdbg<<"x0,y0 = "<<x0<<','<<y0<<std::endl;
int iz = int(-x0/dx+0.5);
int jz = int(-y0/dy+0.5);
xdbg<<"iz,jz = "<<iz<<','<<jz<<std::endl;
xdbg<<"near zero at "<<(x0+iz*dx)<<" "<<(y0+jz*dy)<<std::endl;
if (std::abs(x0 + iz*dx) < 1.e-10 && iz > 0 && iz < m) izero = iz;
else izero = 0;
if (std::abs(y0 + jz*dy) < 1.e-10 && jz > 0 && jz < n) jzero = jz;
else jzero = 0;
}
// Apply inv to x,y
if (_mB == 0. && _mC == 0.) {
double xscal = _invdet * _mD;
double yscal = _invdet * _mA;
x0 *= xscal;
dx *= xscal;
y0 *= yscal;
dy *= yscal;
GetImpl(_adaptee)->fillXImage(im,x0,dx,izero,y0,dy,jzero);
} else {
Position<double> inv0 = inv(Position<double>(x0,y0));
Position<double> inv1 = inv(Position<double>(dx,0.));
Position<double> inv2 = inv(Position<double>(0.,dy));
xdbg<<"inv0 = "<<inv0<<std::endl;
xdbg<<"inv1 = "<<inv1<<std::endl;
xdbg<<"inv2 = "<<inv2<<std::endl;
GetImpl(_adaptee)->fillXImage(im,inv0.x,inv1.x,inv2.x,inv0.y,inv2.y,inv1.y);
}
// Apply flux scaling
if (std::abs(_ampScaling - 1.) > this->gsparams.xvalue_accuracy)
im *= T(_ampScaling);
}
template <typename T>
void SBTransform::SBTransformImpl::fillXImage(ImageView<T> im,
double x0, double dx, double dxy,
double y0, double dy, double dyx) const
{
dbg<<"SBTransform fillXImage\n";
dbg<<"x = "<<x0<<" + i * "<<dx<<" + j * "<<dxy<<std::endl;
dbg<<"y = "<<y0<<" + i * "<<dyx<<" + j * "<<dy<<std::endl;
dbg<<"A,B,C,D = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
dbg<<"cen = "<<_cen<<", zerocen = "<<_zeroCen<<std::endl;
dbg<<"fluxScaling = "<<_fluxScaling<<", invdet = "<<_invdet<<std::endl;
dbg<<"ampScaling = "<<_ampScaling<<std::endl;
// Subtract cen
if (!_zeroCen) {
x0 -= _cen.x;
y0 -= _cen.y;
}
// Apply inv to x,y
Position<double> inv0 = inv(Position<double>(x0,y0));
Position<double> inv1 = inv(Position<double>(dx,dyx));
Position<double> inv2 = inv(Position<double>(dxy,dy));
xdbg<<"inv0 = "<<inv0<<std::endl;
xdbg<<"inv1 = "<<inv1<<std::endl;
xdbg<<"inv2 = "<<inv2<<std::endl;
GetImpl(_adaptee)->fillXImage(im,inv0.x,inv1.x,inv2.x,inv0.y,inv2.y,inv1.y);
// Apply flux scaling
if (std::abs(_ampScaling - 1.) > this->gsparams.xvalue_accuracy)
im *= T(_ampScaling);
}
// A helper function for filKImage below.
// Probably not worth specializing using SSE, since not much time spent in this.
// Also, to avoid rounding errors accumulating, it's better to do this in double
// precision anyway, so we probably don't really want a single-precision SSE version.
template <typename T>
inline void fillphase_1d(std::complex<T>* kit, int m, double k, double dk)
{
#if 0
// Original, more legible code
for (; m; --m, k+=dk)
*kit++ = std::polar(1., -k);
#else
// Implement by repeated multiplications by polar(1, -dk), rather than computing
// the polar form each time. (slow trig!)
// This is mildly unstable, so guard the magnitude by multiplying by
// 1/|z|. Since z ~= 1, 1/|z| is very nearly = |z|^2^-1/2 ~= 1.5 - 0.5|z|^2.
std::complex<double> kpol = std::polar(1., -k);
std::complex<double> dkpol = std::polar(1., -dk);
*kit++ = kpol;
for (--m; m; --m) {
kpol *= dkpol;
kpol *= (1.5 - 0.5 * std::norm(kpol));
*kit++ = kpol;
}
#endif
}
template <typename T>
void ApplyKImagePhases(ImageView<std::complex<T> > im,
double kx0, double dkx, double ky0, double dky,
double cenx, double ceny, double fluxScaling)
{
// Make phase terms = |det| exp(-i(kx*cenx + ky*ceny))
// In this case, the terms are separable, so only need to make kx and ky phases
// separately.
const int m = im.getNCol();
int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= cenx;
dkx *= cenx;
ky0 *= ceny;
dky *= ceny;
// Use the stack rather than the heap for these, since a bit faster and small
// enough that they should fit without any problem.
T xphase_kx[2*m];
T xphase_ky[2*n];
std::complex<T>* phase_kx = reinterpret_cast<std::complex<T>*>(xphase_kx);
std::complex<T>* phase_ky = reinterpret_cast<std::complex<T>*>(xphase_ky);
fillphase_1d<T>(phase_kx, m, kx0, dkx);
fillphase_1d<T>(phase_ky, n, ky0, dky);
for (; n; --n, ptr+=skip, ++phase_ky) {
InnerLoopHelper<T>::phaseloop_1d(ptr, phase_kx, m, T(fluxScaling) * *phase_ky);
}
}
template <typename T>
void ApplyKImagePhases(ImageView<std::complex<T> > im,
double kx0, double dkx, double dkxy,
double ky0, double dky, double dkyx,
double cenx, double ceny, double fluxScaling)
{
const int m = im.getNCol();
const int n = im.getNRow();
std::complex<T>* ptr = im.getData();
int skip = im.getNSkip();
assert(im.getStep() == 1);
kx0 *= cenx;
dkx *= cenx;
dkxy *= cenx;
ky0 *= ceny;
dky *= ceny;
dkyx *= ceny;
// Only ever use these as sum of kx + ky, so add them together now.
double k0 = kx0 + ky0;
double dk0 = dkxy + dky;
double dk1 = dkx + dkyx;
for (int j=n; j; --j, k0+=dk0, ptr+=skip) {
double k = k0;
#if 0
// Original, more legible code
for (int i=m; i; --i, k+=dk1) {
*ptr++ *= std::polar(fluxScaling, -k);
}
#else
// See comments above in fillphase_1d for what's going on here.
std::complex<double> kpol = std::polar(1., -k);
std::complex<double> dkpol = std::polar(1., -dk1);
*ptr++ *= fluxScaling * kpol;
for (int i=m-1; i; --i) {
kpol *= dkpol;
kpol *= (1.5 - 0.5 * std::norm(kpol));
*ptr++ *= fluxScaling * kpol;
}
#endif
}
}
// This one is exposed to Python
template <typename T>
void ApplyKImagePhases(ImageView<std::complex<T> > image, double imscale, const double* jac,
double cenx, double ceny, double fluxScaling)
{
dbg<<"Start ApplyKImagePhases: \n";
dbg<<"bounds = "<<image.getBounds()<<std::endl;
dbg<<"imscale = "<<imscale<<std::endl;
assert(image.getStep() == 1);
int xmin = image.getXMin();
int ymin = image.getYMin();
double x0 = xmin*imscale;
double y0 = ymin*imscale;
if (!jac) {
dbg<<"no jac\n";
ApplyKImagePhases(image, x0, imscale, y0, imscale, cenx, ceny, fluxScaling);
} else if (jac[1] == 0. && jac[2] == 0.) {
double mA = jac[0];
double mD = jac[3];
dbg<<"diag jac: "<<mA<<','<<mD<<std::endl;
double new_x0 = x0 * mA;
double new_y0 = y0 * mD;
double dx = imscale * mA;
double dy = imscale * mD;
ApplyKImagePhases(image, new_x0, dx, new_y0, dy, cenx, ceny, fluxScaling);
} else {
double mA = jac[0];
double mB = jac[1];
double mC = jac[2];
double mD = jac[3];
dbg<<"jac = "<<mA<<','<<mB<<','<<mC<<','<<mD<<std::endl;
double new_x0 = mA*x0 + mC*y0;
double new_y0 = mB*x0 + mD*y0;
double dx = mA * imscale;
double dxy = mC * imscale;
double dy = mD * imscale;
double dyx = mB * imscale;
ApplyKImagePhases(image, new_x0, dx, dxy, new_y0, dy, dyx, cenx, ceny, fluxScaling);
}
}
template <typename T>
void SBTransform::SBTransformImpl::fillKImage(ImageView<std::complex<T> > im,
double kx0, double dkx, int izero,
double ky0, double dky, int jzero) const
{
dbg<<"SBTransform fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<", izero = "<<izero<<std::endl;
dbg<<"ky = "<<ky0<<" + j * "<<dky<<", jzero = "<<jzero<<std::endl;
dbg<<"A,B,C,D = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
dbg<<"cen = "<<_cen<<", zerocen = "<<_zeroCen<<std::endl;
dbg<<"fluxScaling = "<<_fluxScaling<<", invdet = "<<_invdet<<std::endl;
dbg<<"ampScaling = "<<_ampScaling<<std::endl;
// Apply fwdT to kx,ky
if (_mB == 0. && _mC == 0.) {
double fwdT_kx0 = _mA * kx0;
double fwdT_dkx = _mA * dkx;
double fwdT_ky0 = _mD * ky0;
double fwdT_dky = _mD * dky;
GetImpl(_adaptee)->fillKImage(im,fwdT_kx0,fwdT_dkx,izero,fwdT_ky0,fwdT_dky,jzero);
} else {
Position<double> fwdT0 = fwdT(Position<double>(kx0,ky0));
Position<double> fwdT1 = fwdT(Position<double>(dkx,0.));
Position<double> fwdT2 = fwdT(Position<double>(0.,dky));
xdbg<<"fwdT0 = "<<fwdT0<<std::endl;
xdbg<<"fwdT1 = "<<fwdT1<<std::endl;
xdbg<<"fwdT2 = "<<fwdT2<<std::endl;
GetImpl(_adaptee)->fillKImage(im,fwdT0.x,fwdT1.x,fwdT2.x,fwdT0.y,fwdT2.y,fwdT1.y);
}
// Apply phases
if (_zeroCen) {
xdbg<<"zeroCen\n";
if (std::abs(_fluxScaling - 1.) > this->gsparams.kvalue_accuracy)
im *= T(_fluxScaling);
} else {
xdbg<<"!zeroCen\n";
ApplyKImagePhases(im, kx0, dkx, ky0, dky, _cen.x, _cen.y, _fluxScaling);
}
}
template <typename T>
void SBTransform::SBTransformImpl::fillKImage(ImageView<std::complex<T> > im,
double kx0, double dkx, double dkxy,
double ky0, double dky, double dkyx) const
{
dbg<<"SBTransform fillKImage\n";
dbg<<"kx = "<<kx0<<" + i * "<<dkx<<" + j * "<<dkxy<<std::endl;
dbg<<"ky = "<<ky0<<" + i * "<<dkyx<<" + j * "<<dky<<std::endl;
dbg<<"A,B,C,D = "<<_mA<<','<<_mB<<','<<_mC<<','<<_mD<<std::endl;
dbg<<"cen = "<<_cen<<", zerocen = "<<_zeroCen<<std::endl;
dbg<<"fluxScaling = "<<_fluxScaling<<", invdet = "<<_invdet<<std::endl;
dbg<<"ampScaling = "<<_ampScaling<<std::endl;
// Apply fwdT to kx,ky
// Original (x,y):
// kx = kx0 + i dkx + j dkxy
// ky = ky0 + i dkyx + j dky
// (kx',ky') = fwdT(kx,ky)
// kx' = A kx + C ky
// = (A kx0 + C ky0) + i (A dkx + C dkyx) + j (A dkxy + C dky)
// ky' = B kx + D ky
// = (B kx0 + D ky0) + i (B dkx + D dkyx) + j (B dkxy + D dky)
//
Position<double> fwdT0 = fwdT(Position<double>(kx0,ky0));
Position<double> fwdT1 = fwdT(Position<double>(dkx,dkyx));
Position<double> fwdT2 = fwdT(Position<double>(dkxy,dky));
xdbg<<"fwdT0 = "<<fwdT0<<std::endl;
xdbg<<"fwdT1 = "<<fwdT1<<std::endl;
xdbg<<"fwdT2 = "<<fwdT2<<std::endl;
GetImpl(_adaptee)->fillKImage(im,fwdT0.x,fwdT1.x,fwdT2.x,fwdT0.y,fwdT2.y,fwdT1.y);
// Apply phase terms = |det| exp(-i(kx*cenx + ky*ceny))
if (_zeroCen) {
xdbg<<"zeroCen\n";
if (std::abs(_fluxScaling - 1.) > this->gsparams.kvalue_accuracy)
im *= T(_fluxScaling);
} else {
xdbg<<"!zeroCen\n";
ApplyKImagePhases(im, kx0, dkx, dkxy, ky0, dky, dkyx, _cen.x, _cen.y, _fluxScaling);
}
}
void SBTransform::SBTransformImpl::shoot(PhotonArray& photons, UniformDeviate ud) const
{
const int N = photons.size();
dbg<<"Distort shoot: N = "<<N<<std::endl;
dbg<<"Target flux = "<<getFlux()<<std::endl;
// Simple job here: just remap coords of each photon, then change flux
// If there is overall magnification in the transform
_adaptee.shoot(photons,ud);
for (int i=0; i<N; i++) {
Position<double> xy = fwd(Position<double>(photons.getX(i), photons.getY(i)))+_cen;
photons.setPhoton(i, xy.x, xy.y, photons.getFlux(i)*_fluxScaling);
}
dbg<<"Distort Realized flux = "<<photons.getTotalFlux()<<std::endl;
}
template void ApplyKImagePhases(ImageView<std::complex<double> > image,
double imscale, const double* jac,
double cenx, double ceny, double fluxScaling);
template void ApplyKImagePhases(ImageView<std::complex<float> > image,
double imscale, const double* jac,
double cenx, double ceny, double fluxScaling);
}