-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathTable.cpp
1324 lines (1166 loc) · 51.9 KB
/
Table.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* -*- c++ -*-
* Copyright (c) 2012-2023 by the GalSim developers team on GitHub
* https://github.com/GalSim-developers
*
* This file is part of GalSim: The modular galaxy image simulation toolkit.
* https://github.com/GalSim-developers/GalSim
*
* GalSim is free software: redistribution and use in source and binary forms,
* with or without modification, are permitted provided that the following
* conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions, and the disclaimer given in the accompanying LICENSE
* file.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the disclaimer given in the documentation
* and/or other materials provided with the distribution.
*/
//#define DEBUGLOGGING
#include <cmath>
#include <vector>
#include <iostream>
#include <deque>
#include "fmath/fmath.hpp" // For SSE
#include "Table.h"
#include "Interpolant.h"
namespace galsim {
// ArgVec
// A class to represent an argument vector for a Table or Table2D.
class ArgVec
{
public:
ArgVec(const double* args, int n);
int upperIndex(double a) const;
void upperIndexMany(const double* a, int* idx, int N) const;
// A few things to look similar to a vector<dobule>
const double* begin() const { return _vec;}
const double* end() const { return _vec + _n;}
double front() const { return *_vec; }
double back() const { return *(_vec + _n - 1); }
double operator[](int i) const { return _vec[i]; }
size_t size() const { return _n; }
private:
const double* _vec;
int _n;
// A few convenient additional member variables.
double _lower_slop, _upper_slop;
bool _equalSpaced;
double _da;
mutable int _lastIndex;
};
ArgVec::ArgVec(const double* vec, int n): _vec(vec), _n(n)
{
xdbg<<"Make ArgVec from vector starting with: "<<vec[0]<<std::endl;
const double tolerance = 0.01;
_da = (back() - front()) / (_n-1);
_equalSpaced = true;
for (int i=1; i<_n; i++) {
if (std::abs((_vec[i] - _vec[0])/_da - i) > tolerance) _equalSpaced = false;
}
_lastIndex = 1;
_lower_slop = (_vec[1]-_vec[0]) * 1.e-6;
_upper_slop = (_vec[_n-1]-_vec[_n-2]) * 1.e-6;
}
// Look up an index. Use STL binary search.
int ArgVec::upperIndex(double a) const
{
// check for slop
if (a < front()) return 1;
if (a > back()) return _n-1;
if (_equalSpaced) {
xdbg<<"Equal spaced\n";
xdbg<<"da = "<<_da<<std::endl;
int i = int( std::ceil( (a-front()) / _da) );
xdbg<<"i = "<<i<<std::endl;
if (i >= _n) i = _n-1; // in case of rounding error or off the edge
if (i <= 0) i = 1;
xdbg<<"i => "<<i<<std::endl;
return i;
} else {
xdbg<<"Not equal spaced\n";
xdbg<<"lastIndex = "<<_lastIndex<<" "<<_vec[_lastIndex-1]<<" "<<_vec[_lastIndex]<<std::endl;
xassert(_lastIndex >= 1);
xassert(_lastIndex < _n);
if ( a < _vec[_lastIndex-1] ) {
xdbg<<"Go lower\n";
xassert(_lastIndex-2 >= 0);
// Check to see if the previous one is it.
if (a >= _vec[_lastIndex-2]) {
xdbg<<"Previous works: "<<_vec[_lastIndex-2]<<std::endl;
return --_lastIndex;
} else {
// Look for the entry from 0.._lastIndex-1:
const double* p = std::upper_bound(begin(), begin()+_lastIndex-1, a);
xassert(p != begin());
xassert(p != begin()+_lastIndex-1);
_lastIndex = p-begin();
xdbg<<"Success: "<<_lastIndex<<" "<<_vec[_lastIndex]<<std::endl;
return _lastIndex;
}
} else if (a > _vec[_lastIndex]) {
xassert(_lastIndex+1 < _n);
// Check to see if the next one is it.
if (a <= _vec[_lastIndex+1]) {
xdbg<<"Next works: "<<_vec[_lastIndex+1]<<std::endl;
return ++_lastIndex;
} else {
// Look for the entry from _lastIndex..end
const double* p = std::lower_bound(begin()+_lastIndex+1, end(), a);
xassert(p != begin()+_lastIndex+1);
xassert(p != end());
_lastIndex = p-begin();
xdbg<<"Success: "<<_lastIndex<<" "<<_vec[_lastIndex]<<std::endl;
return _lastIndex;
}
} else {
xdbg<<"lastindex is still good.\n";
// Then _lastIndex is correct.
return _lastIndex;
}
}
}
void ArgVec::upperIndexMany(const double* a, int* indices, int N) const
{
xdbg<<"Start upperIndexMany\n";
if (_equalSpaced) {
xdbg << "Equal spaced\n";
xdbg << "da = "<<_da<<'\n';
for (int k=0; k<N; k++) {
xdbg<<"a[k] = "<<a[k]<<std::endl;
int idx = int(std::ceil((a[k]-front()) / _da));
if (idx >= _n) idx = _n-1; // in case of rounding error or off the edge
if (idx <= 0) idx = 1;
xdbg << "idx = "<<idx<<'\n';
indices[k] = idx;
}
} else {
xdbg << "Not equal spaced\n";
int idx = 1;
double lowerBound = _vec[0];
double upperBound = _vec[1];
for (int k=0; k<N; k++) {
xassert(idx >= 1);
xassert(idx < _n);
if (a[k] < front()) {
indices[k] = 1;
continue;
}
if (a[k] > back()) {
indices[k] = _n - 1;
continue;
}
if (a[k] < lowerBound) { // Go lower
xdbg << "Go lower\n";
xassert(idx-2 >= 0);
if (a[k] >= _vec[idx-2]) { // Check previous index
xdbg << "Previous works "<<_vec[idx-2]<<'\n';
--idx;
indices[k] = idx;
upperBound = lowerBound;
lowerBound = _vec[idx-1];
} else {
const double* p = std::upper_bound(begin(), begin()+idx-1, a[k]);
xassert(p != begin());
xassert(p != begin()+idx-1);
idx = p-begin();
indices[k] = idx;
upperBound = _vec[idx];
lowerBound = _vec[idx-1];
xdbg << "Sucess: "<<idx<<" "<<upperBound<<'\n';
}
} else if (a[k] > upperBound) { //Go higher
xdbg << "Go higher\n";
xassert(idx+1 < _n);
if (a[k] <= _vec[idx+1]) { // Check next index
xdbg << "Next works "<<_vec[idx-2]<<'\n';
++idx;
indices[k] = idx;
lowerBound = upperBound;
upperBound = _vec[idx];
} else {
const double* p = std::lower_bound(begin()+idx+1, end(), a[k]);
xassert(p != begin()+idx+1);
xassert(p != end());
idx = p-begin();
indices[k] = idx;
upperBound = _vec[idx];
lowerBound = _vec[idx-1];
xdbg << "Sucess: "<<idx<<" "<<upperBound<<'\n';
}
} else {
indices[k] = idx;
}
}
}
}
// The hierarchy for TableImpl looks like:
// TableImpl <- ABC
// TCRTP<T> : TableImpl <- curiously recurring template pattern
// TLinearInterp : TCRTP<TLinearInterp>
// ... similar, Floor, Ceil, Nearest, Spline
// TGSInterpolant<interpolant> : TCRTP<TGSInterpolant<interpolant>> <- Use Interpolant
class Table::TableImpl {
public:
TableImpl(const double* args, const double* vals, int N) :
_args(args, N), _n(N), _vals(vals) ,
_slop_min(_args.front() - 1.e-6 * (_args.back() - _args.front())),
_slop_max(_args.back() + 1.e-6 * (_args.back() - _args.front()))
{}
virtual int find(double a) const = 0;
virtual double lookup(double a) const = 0;
virtual double interp(double a, int i) const = 0;
virtual void interpMany(const double* argvec, double* valvec, int N) const = 0;
virtual double integrate(double xmin, double max) const = 0;
virtual double integrateProduct(const Table::TableImpl& g,
double xmin, double xmax, double xfact) const = 0;
double argMin() const { return _args.front(); }
double argMax() const { return _args.back(); }
int size() const { return _n; }
inline double getArg(int i) const { return _args[i]; }
inline double getVal(int i) const { return _vals[i]; }
virtual ~TableImpl() {}
protected:
ArgVec _args;
const int _n;
const double* _vals;
const double _slop_min, _slop_max;
};
template<class T>
class TCRTP : public Table::TableImpl {
public:
using Table::TableImpl::TableImpl;
double lookup(double a) const override {
return interp(a, find(a));
}
int find(double a) const override {
return _args.upperIndex(a);
}
double interp(double a, int i) const override {
if (!(a >= _slop_min && a <= _slop_max))
throw std::runtime_error("invalid argument to Table.interp");
return static_cast<const T*>(this)->_interp(a, i);
}
void interpMany(const double* xvec, double* valvec, int N) const override {
std::vector<int> indices(N);
_args.upperIndexMany(xvec, indices.data(), N);
for (int k=0; k<N; k++) {
valvec[k] = interp(xvec[k], indices[k]);
}
}
double integrate(double xmin, double xmax) const override
{
dbg<<"Start integrate: "<<xmin<<" "<<xmax<<std::endl;
int i = _args.upperIndex(xmin);
double x1 = xmin;
double f1; // not determined yet.
double x2 = _args[i];
double f2 = _vals[i];
if (x2 > xmax) {
// If the whole integration region is between two of the tabulated points,
// then it requires some extra special handling.
x2 = xmax;
dbg<<"do special case full range x1,x2 = "<<x1<<','<<x2<<std::endl;
f1 = interp(x1, i);
f2 = interp(x2, i);
double ans = static_cast<const T*>(this)->integ_step_full(x1,f1,x2,f2,i);
dbg<<"ans = "<<ans<<std::endl;
return ans;
}
double ans = 0.;
// Do the first integration step, which may need some additional work to handle
// left edge not being a table point.
if (x2 > x1) {
xdbg<<"do first step: x1,x2 = "<<x1<<','<<x2<<std::endl;
// if x1 == x2, then skip "first" step, since it is 0.
f1 = interp(x1, i);
double step = static_cast<const T*>(this)->integ_step_first(x1,f1,x2,f2,i);
ans += step;
xdbg<<"ans = "<<ans<<std::endl;
}
x1 = x2;
f1 = f2;
x2 = _args[++i];
f2 = _vals[i];
// Accumulate the main part of the integral
while (x2 <= xmax && i<size()) {
double step = static_cast<const T*>(this)->integ_step(x1,f1,x2,f2,i);
xdbg<<"integration step = "<<step<<std::endl;
ans += step;
xdbg<<"ans = "<<ans<<std::endl;
x1 = x2;
f1 = f2;
x2 = _args[++i];
f2 = _vals[i];
xdbg<<"f("<<x2<<") = "<<f2<<std::endl;
}
// Last step also needs special handling.
if (x1 < xmax) {
x2 = xmax;
f2 = interp(xmax, i);
xdbg<<"last f("<<x2<<") = "<<f2<<std::endl;
double step = static_cast<const T*>(this)->integ_step_last(x1,f1,x2,f2,i);
xdbg<<"integration step = "<<step<<std::endl;
ans += step;
xdbg<<"ans = "<<ans<<std::endl;
}
dbg<<"final ans = "<<ans<<std::endl;
return ans;
}
double integrateProduct(const Table::TableImpl& g, double xmin, double xmax,
double xfact) const override
{
// Here with two sets of abscissae, we never assume we have a full interval,
// since most of the time we won't for either f or g. This will only be a little
// inefficient when f is spline interpolated and g was a function or happens to have
// exactly the same x values. Not our dominant use case, so it doesn't seem worth
// trying to optimize for that.
dbg<<"Start integrateProduct: "<<xmin<<" "<<xmax<<" "<<xfact<<std::endl;
double x1 = xmin;
double xx1 = x1 * xfact;
int i = find(xx1);
int j = g.find(x1);
double f1 = interp(xx1, i);
double g1 = g.interp(x1, j);
double x2 = g.getArg(j);
double xx2 = x2 * xfact;
if (getArg(i) < xx2) {
xx2 = getArg(i);
x2 = xx2 / xfact;
}
double f2 = interp(xx2, i);
double g2 = g.interp(x2, j);
dbg<<"Start at x1 = "<<x1<<", f("<<xx1<<") = "<<f1<<", g("<<x1<<") = "<<g1<<std::endl;
dbg<<"First x2 = "<<x2<<", f("<<xx2<<") = "<<f2<<", g("<<x2<<") = "<<g2<<std::endl;
double ans = 0.;
while (x2 < xmax) {
double step = static_cast<const T*>(this)->integ_prod_step(
x1,f1,x2,f2,i,xfact,g1,g2);
xdbg<<"integration step ("<<x1<<" .. "<<x2<<") = "<<step<<std::endl;
ans += step;
xdbg<<"ans = "<<ans<<std::endl;
x1 = x2;
f1 = f2;
g1 = g2;
// Either xx2 == _args[i] or x2 == g._args[j] (or both).
assert((xx2 == getArg(i)) || (x2 == g.getArg(j)));
if (xx2 == getArg(i)) ++i;
else assert(xx2 < getArg(i));
if (x2 == g.getArg(j)) ++j;
else assert(x2 < g.getArg(j));
x2 = g.getArg(j);
xx2 = x2 * xfact;
if (getArg(i) < xx2) {
xx2 = getArg(i);
x2 = xx2 / xfact;
}
f2 = interp(xx2, i);
g2 = g.interp(x2, j);
}
// Last step needs special handling.
x2 = xmax;
xx2 = x2 * xfact;
f2 = interp(xx2, i);
g2 = g.interp(x2, j);
double step = static_cast<const T*>(this)->integ_prod_step(x1,f1,x2,f2,i,xfact,g1,g2);
xdbg<<"integration step ("<<x1<<" .. "<<x2<<") = "<<step<<std::endl;
ans += step;
dbg<<"final ans = "<<ans<<std::endl;
return ans;
}
// Many of the cases don't need any special handling for first/last steps.
// So for those, just use the regular step. Only override if necessary.
double integ_step(double x1, double f1, double x2, double f2, int i) const {
return static_cast<const T*>(this)->integ_step(x1,f1,x2,f2,i);
}
double integ_step_first(double x1, double f1, double x2, double f2, int i) const {
return integ_step(x1,f1,x2,f2,i);
}
double integ_step_last(double x1, double f1, double x2, double f2, int i) const {
return integ_step(x1,f1,x2,f2,i);
}
double integ_step_full(double x1, double f1, double x2, double f2, int i) const {
return integ_step(x1,f1,x2,f2,i);
}
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
return static_cast<const T*>(this)->integ_prod_step(x1,f1,x2,f2,i,xfact,g1,g2);
}
};
class TFloor : public TCRTP<TFloor> {
public:
using TCRTP<TFloor>::TCRTP;
double _interp(double a, int i) const {
// On entry, it is only guaranteed that _args[i-1] <= a <= _args[i].
// Normally those ='s are ok, but for floor and ceil we make the extra
// check to see if we should choose the opposite bound.
if (a == _args[i]) i++;
return _vals[i-1];
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
return f1 * (x2-x1);
}
// No special handling needed for first or last.
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
return 0.5 * f1 * (g1+g2) * (x2-x1);
}
};
class TCeil : public TCRTP<TCeil> {
public:
using TCRTP<TCeil>::TCRTP;
double _interp(double a, int i) const {
if (a == _args[i-1]) i--;
return _vals[i];
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
return f2 * (x2-x1);
}
// No special handling needed for first or last.
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
return 0.5 * f2 * (g1+g2) * (x2-x1);
}
};
class TNearest : public TCRTP<TNearest> {
public:
using TCRTP<TNearest>::TCRTP;
double _interp(double a, int i) const {
if ((a - _args[i-1]) < (_args[i] - a)) i--;
return _vals[i];
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
return 0.5 * (f1+f2) * (x2-x1);
}
double integ_step_first(double x1, double f1, double x2, double f2, int i) const {
double x0 = _args[i-1];
double xm = 0.5 * (x0+x2);
if (x1 >= xm) {
return f2 * (x2-x1);
} else {
return f1 * (xm-x1) + f2 * (x2-xm);
}
}
double integ_step_last(double x1, double f1, double x2, double f2, int i) const {
double x3 = _args[i];
double xm = 0.5 * (x1+x3);
if (x2 <= xm) {
return f1 * (x2-x1);
} else {
return f1 * (xm-x1) + f2 * (x2-xm);
}
}
double integ_step_full(double x1, double f1, double x2, double f2, int i) const {
double x0 = _args[i-1];
double x3 = _args[i];
double xm = 0.5 * (x0+x3);
if (x2 <= xm) {
return f1 * (x2-x1);
} else if (x1 >= xm) {
return f2 * (x2-x1);
} else {
return f1 * (xm-x1) + f2 * (x2-xm);
}
}
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
double x0 = _args[i-1] / xfact;
double x3 = _args[i] / xfact;
double xm = 0.5 * (x0+x3);
if (x2 <= xm) {
return 0.5 * f1 * (g1+g2) * (x2-x1);
} else if (x1 >= xm) {
return 0.5 * f2 * (g1+g2) * (x2-x1);
} else {
double gm = (g1*(x2-xm) + g2*(xm-x1)) / (x2-x1);
return 0.5 * f1 * (g1+gm) * (xm-x1) + 0.5 * f2 * (gm+g2) * (x2-xm);
}
}
};
class TLinear : public TCRTP<TLinear> {
public:
using TCRTP<TLinear>::TCRTP;
double _interp(double a, int i) const {
double ax = (_args[i] - a) / (_args[i] - _args[i-1]);
double bx = 1.0 - ax;
return _vals[i]*bx + _vals[i-1]*ax;
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
return 0.5 * (f1+f2) * (x2-x1);
}
// No special handling needed for first or last.
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
return (1./6.) * (x2-x1) * (f1*(2.*g1 + g2) + f2*(g1 + 2.*g2));
}
};
class TSpline : public TCRTP<TSpline> {
public:
TSpline(const double* args, const double* vals, int N) :
TCRTP<TSpline>::TCRTP(args, vals, N)
{
setupSpline();
}
double _interp(double a, int i) const {
#if 0
// Direct calculation saved for comparison:
double h = _args[i] - _args[i-1];
double aa = (_args[i] - a)/h;
double bb = 1. - aa;
return aa*_vals[i-1] +bb*_vals[i] +
((aa*aa*aa-aa)*_y2[i-1]+(bb*bb*bb-bb)*_y2[i]) *
(h*h)/6.0;
#else
// Factor out h factors, so only need 1 division by h.
// Also, use the fact that bb = h-aa to simplify the calculation.
double h = _args[i] - _args[i-1];
double aa = (_args[i] - a);
double bb = h-aa;
return ( aa*_vals[i-1] + bb*_vals[i] -
(1./6.) * aa * bb * ( (aa+h)*_y2[i-1] +
(bb+h)*_y2[i]) ) / h;
#endif
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
// It turns out that the integral over the spline is close to the same as
// the trapezoid rule. There is a small correction bit for the cubic part.
double h = x2-x1;
double h3 = h*h*h;
return 0.5 * (f1+f2) * h - (1./24.) * (_y2[i-1]+_y2[i]) * h3;
}
double integ_step_first(double x1, double f1, double x2, double f2, int i) const {
double h = x2-x1;
double h3 = h*h*h;
double x0 = _args[i-1];
double z2 = x1+x2-2*x0;
return 0.5 * (f1+f2) * h - (1./24.) * (_y2[i-1]*h + _y2[i]*z2) * h3 / (x2-x0);
}
double integ_step_last(double x1, double f1, double x2, double f2, int i) const {
double h = x2-x1;
double h3 = h*h*h;
double x3 = _args[i];
double z1 = 2*x3-x1-x2;
return 0.5 * (f1+f2) * h - (1./24.) * (_y2[i-1]*z1 + _y2[i]*h) * h3 / (x3-x1);
}
double integ_step_full(double x1, double f1, double x2, double f2, int i) const {
// When the endpoints aren't the tabulated points, the trapozoid part stays the same,
// but there is a slight adjustment to the correction term.
double h = x2-x1;
double h3 = h*h*h;
double x0 = _args[i-1];
double x3 = _args[i];
double z1 = 2*x3-x1-x2;
double z2 = x1+x2-2*x0;
return 0.5 * (f1+f2) * h - (1./24.) * (_y2[i-1]*z1 + _y2[i]*z2) * h3 / (x3-x0);
}
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
double h = x2-x1;
double h3 = h*h*h;
double x0 = _args[i-1] / xfact;
double x3 = _args[i] / xfact;
double z1 = x1*g2 + x2*g1 + (15*x3 - 8*(x1+x2)) * (g1+g2);
double z2 = x1*g1 + x2*g2 + (7*(x1+x2) - 15*x0) * (g1+g2);
double step = (1./6.) * h * (f1*(2.*g1 + g2) + f2*(g1 + 2.*g2));
step -= (1./360.) * (_y2[i-1] * z1 + _y2[i] * z2) * h3 * xfact * xfact / (x3-x0);
return step;
}
private:
std::vector<double> _y2;
void setupSpline();
};
void TSpline::setupSpline()
{
/**
* Calculate the 2nd derivatives of the natural cubic spline.
*
* Here we follow the broad procedure outlined in this technical note by Jim
* Armstrong, freely available online:
* http://www.algorithmist.net/spline.html
*
* The system we solve is equation [7]. In our adopted notation u_i are the diagonals
* of the matrix M, and h_i the off-diagonals. y'' is z_i and the rhs = v_i.
*/
// Set up the 2nd-derivative table for splines
_y2.resize(_n);
// End points 2nd-derivatives zero for natural cubic spline
_y2[0] = 0.;
_y2[_n-1] = 0.;
assert(_n >= 2);
if (_n == 2) {
// Nothing to do if only 2 points.
} else if (_n == 3) {
// For 3 points second derivative at i=1 is simple
_y2[1] = 3.*((_vals[2] - _vals[1]) / (_args[2] - _args[1]) -
(_vals[1] - _vals[0]) / (_args[1] - _args[0])) / (_args[2] - _args[0]);
} else {
// For 4 or more points we used to use the TMV symmetric tridiagonal matrix solver.
// Eigen doesn't have a BandMatrix class (at least not one that is functional)
// But in this case, the band matrix is so simple and stable (diagonal dominant)
// that we can just use the Thomas algorithm to solve it directly.
// https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
std::vector<double> c(_n-3); // Just need a single temporary vector.
for (int i=1; i<=_n-2; i++) {
_y2[i] = 6. * ( (_vals[i+1] - _vals[i]) / (_args[i+1] - _args[i]) -
(_vals[i] - _vals[i-1]) / (_args[i] - _args[i-1]) );
}
double bb = 2. * (_args[2] - _args[0]);
for (int i=1; i<=_n-2; ++i) {
_y2[i] /= bb;
if (i == _n-2) break;
double a = _args[i+1] - _args[i];
c[i-1] = a;
c[i-1] /= bb;
bb = 2. * (_args[i+2] - _args[i]);
bb -= a * c[i-1];
_y2[i+1] -= a * _y2[i];
}
for (int i=_n-3; i>0; --i) {
_y2[i] -= c[i-1] * _y2[i+1];
}
}
}
class TGSInterpolant : public TCRTP<TGSInterpolant> {
public:
TGSInterpolant(const double* args, const double* vals, int N, const Interpolant* gsinterp) :
TCRTP<TGSInterpolant>::TCRTP(args, vals, N), _gsinterp(gsinterp) {}
double _interp(double a, int i) const {
double dagrid = _args[i] - _args[i-1];
double da = (a - _args[i-1])/dagrid;
int iaMin, iaMax;
if (_gsinterp->isExactAtNodes()) {
if (std::abs(da) < 10.*std::numeric_limits<double>::epsilon()) {
iaMin = iaMax = i-1;
} else if (std::abs(da-1.) < 10.*std::numeric_limits<double>::epsilon()) {
iaMin = iaMax = i;
} else {
iaMin = i-1 + int(std::ceil(da-_gsinterp->xrange()));
iaMax = i-1 + int(std::floor(da+_gsinterp->xrange()));
}
} else {
iaMin = i-1 + int(std::ceil(da-_gsinterp->xrange()));
iaMax = i-1 + int(std::floor(da+_gsinterp->xrange()));
}
iaMin = std::max(iaMin, 0);
iaMax = std::min(iaMax, _n-1);
if (iaMin > iaMax) return 0.0;
double sum = 0.0;
for(int ia=iaMin; ia<=iaMax; ia++) {
sum += _vals[ia] * _gsinterp->xval(i-1+da-ia);
}
return sum;
}
double integ_step(double x1, double f1, double x2, double f2, int i) const {
throw std::runtime_error("integration not implemented for gsinterp Tables");
}
double integ_prod_step(double x1, double f1, double x2, double f2, int i, double xfact,
double g1, double g2) const {
throw std::runtime_error("integration not implemented for gsinterp Tables");
}
private:
const Interpolant* _gsinterp;
};
// Table
Table::Table(const double* args, const double* vals, int N, Table::interpolant in) {
_makeImpl(args, vals, N, in);
}
Table::Table(const double* args, const double* vals, int N, const Interpolant* gsinterp) {
_makeImpl(args, vals, N, gsinterp);
}
void Table::_makeImpl(const double* args, const double* vals, int N,
Table::interpolant in) {
switch(in) {
case floor:
_pimpl.reset(new TFloor(args, vals, N));
break;
case ceil:
_pimpl.reset(new TCeil(args, vals, N));
break;
case nearest:
_pimpl.reset(new TNearest(args, vals, N));
break;
case linear:
_pimpl.reset(new TLinear(args, vals, N));
break;
case spline:
_pimpl.reset(new TSpline(args, vals, N));
break;
default:
throw std::runtime_error("invalid interpolation method");
}
}
void Table::_makeImpl(const double* args, const double* vals, int N,
const Interpolant* gsinterp) {
_pimpl.reset(new TGSInterpolant(args, vals, N, gsinterp));
}
double Table::argMin() const
{ return _pimpl->argMin(); }
double Table::argMax() const
{ return _pimpl->argMax(); }
size_t Table::size() const
{ return _pimpl->size(); }
//lookup and interpolate function value.
double Table::operator()(double a) const
{
if (a<argMin() || a>argMax()) return 0.;
else return _pimpl->lookup(a);
}
//lookup and interpolate function value.
double Table::lookup(double a) const
{ return _pimpl->lookup(a); }
//lookup and interpolate an array of function values.
void Table::interpMany(const double* argvec, double* valvec, int N) const
{ _pimpl->interpMany(argvec, valvec, N); }
double Table::integrate(double xmin, double xmax) const
{ return _pimpl->integrate(xmin, xmax); }
double Table::integrateProduct(const Table& g, double xmin, double xmax, double xfact) const
{ return _pimpl->integrateProduct(*g._pimpl, xmin, xmax, xfact); }
void TableBuilder::finalize()
{
if (_in == Table::gsinterp)
_makeImpl(&_xvec[0], &_fvec[0], _xvec.size(), _gsinterp);
else
_makeImpl(&_xvec[0], &_fvec[0], _xvec.size(), _in);
_final = true;
}
// The hierarchy for Table2DImpl looks like:
// Table2DImpl <- ABC
// T2DCRTP<T> : Table2DImpl <- curiously recurring template pattern
// T2DLinearInterp : T2DCRTP<T2DLinearInterp>
// ... similar, Floor, Ceil, Nearest, Spline
// T2DGSInterpolant<interpolant> : T2DCRTP<T2DGSInterpolant<interpolant>> <- Use Interpolant
class Table2D::Table2DImpl {
public:
Table2DImpl(const double* xargs, const double* yargs, const double* vals, int Nx, int Ny) :
_xargs(xargs, Nx), _yargs(yargs, Ny), _vals(vals), _nx(Nx), _ny(Ny) {}
virtual double lookup(double x, double y) const = 0;
virtual void interpMany(const double* xvec, const double* yvec, double* valvec,
int N) const = 0;
virtual void interpGrid(const double* xvec, const double* yvec, double* valvec,
int Nx, int Ny) const = 0;
virtual void gradient(double x, double y, double& dfdx, double& dfdy) const = 0;
virtual void gradientMany(const double* xvec, const double* yvec,
double* dfdxvec, double* dfdyvec, int N) const = 0;
virtual void gradientGrid(const double* xvec, const double* yvec,
double* dfdxvec, double* dfdyvec, int Nx, int Ny) const = 0;
virtual ~Table2DImpl() {}
protected:
const ArgVec _xargs;
const ArgVec _yargs;
const double* _vals;
const int _nx;
const int _ny;
};
template<class T>
class T2DCRTP : public Table2D::Table2DImpl {
public:
using Table2D::Table2DImpl::Table2DImpl;
double lookup(double x, double y) const {
int i = _xargs.upperIndex(x);
int j = _yargs.upperIndex(y);
return static_cast<const T*>(this)->interp(x, y, i, j);
}
void interpMany(const double* xvec, const double* yvec, double* valvec, int N) const {
std::vector<int> xindices(N);
std::vector<int> yindices(N);
_xargs.upperIndexMany(xvec, xindices.data(), N);
_yargs.upperIndexMany(yvec, yindices.data(), N);
for (int k=0; k<N; k++) {
valvec[k] = static_cast<const T*>(this)->interp(
xvec[k], yvec[k], xindices[k], yindices[k]
);
}
}
void interpGrid(const double* xvec, const double* yvec, double* valvec, int Nx, int Ny) const {
std::vector<int> xindices(Nx);
std::vector<int> yindices(Ny);
_xargs.upperIndexMany(xvec, xindices.data(), Nx);
_yargs.upperIndexMany(yvec, yindices.data(), Ny);
for (int ky=0, k=0; ky<Ny; ky++) {
for (int kx=0; kx<Nx; kx++, k++) {
valvec[k] = static_cast<const T*>(this)->interp(
xvec[kx], yvec[ky], xindices[kx], yindices[ky]
);
}
}
}
void gradient(double x, double y, double& dfdx, double& dfdy) const {
int i = _xargs.upperIndex(x);
int j = _yargs.upperIndex(y);
static_cast<const T*>(this)->grad(x, y, i, j, dfdx, dfdy);
}
void gradientMany(const double* xvec, const double* yvec,
double* dfdxvec, double* dfdyvec, int N) const {
std::vector<int> xindices(N);
std::vector<int> yindices(N);
_xargs.upperIndexMany(xvec, xindices.data(), N);
_yargs.upperIndexMany(yvec, yindices.data(), N);
for (int k=0; k<N; k++) {
static_cast<const T*>(this)->grad(
xvec[k], yvec[k], xindices[k], yindices[k], dfdxvec[k], dfdyvec[k]
);
}
}
void gradientGrid(const double* xvec, const double* yvec,
double* dfdxvec, double* dfdyvec, int Nx, int Ny) const {
std::vector<int> xindices(Nx);
std::vector<int> yindices(Ny);
_xargs.upperIndexMany(xvec, xindices.data(), Nx);
_yargs.upperIndexMany(yvec, yindices.data(), Ny);
for (int ky=0, k=0; ky<Ny; ky++) {
for (int kx=0; kx<Nx; kx++, k++) {
static_cast<const T*>(this)->grad(
xvec[kx], yvec[ky], xindices[kx], yindices[ky], dfdxvec[k], dfdyvec[k]
);
}
}
}
};
class T2DFloor : public T2DCRTP<T2DFloor> {
public:
using T2DCRTP::T2DCRTP;
double interp(double x, double y, int i, int j) const {
// From upperIndex, it is only guaranteed that _xargs[i-1] <= x <= _xargs[i] (and similarly y).
// Normally those ='s are ok, but for floor and ceil we make the extra
// check to see if we should choose the opposite bound.
if (x == _xargs[i]) i++;
if (y == _yargs[j]) j++;
return _vals[(j-1)*_nx+i-1];
}
void grad(double x, double y, int i, int j, double& dfdx, double& dfdy) const {
throw std::runtime_error("gradient not implemented for floor interp");
}
};
class T2DCeil : public T2DCRTP<T2DCeil> {
public:
using T2DCRTP::T2DCRTP;
double interp(double x, double y, int i, int j) const {
if (x == _xargs[i-1]) i--;
if (y == _yargs[j-1]) j--;
return _vals[j*_nx+i];
}
void grad(double x, double y, int i, int j, double& dfdx, double& dfdy) const {
throw std::runtime_error("gradient not implemented for ceil interp");
}
};
class T2DNearest : public T2DCRTP<T2DNearest> {
public:
using T2DCRTP::T2DCRTP;
double interp(double x, double y, int i, int j) const {
if ((x - _xargs[i-1]) < (_xargs[i] - x)) i--;
if ((y - _yargs[j-1]) < (_yargs[j] - y)) j--;
return _vals[j*_nx+i];
}
void grad(double x, double y, int i, int j, double& dfdx, double& dfdy) const {
throw std::runtime_error("gradient not implemented for nearest interp");
}
};
class T2DLinear : public T2DCRTP<T2DLinear> {
public:
using T2DCRTP::T2DCRTP;
double interp(double x, double y, int i, int j) const {
double ax = (_xargs[i] - x) / (_xargs[i] - _xargs[i-1]);
double ay = (_yargs[j] - y) / (_yargs[j] - _yargs[j-1]);
double bx = 1.0 - ax;
double by = 1.0 - ay;
return (_vals[(j-1)*_nx+i-1] * ax * ay
+ _vals[(j-1)*_nx+i] * bx * ay
+ _vals[j*_nx+i-1] * ax * by
+ _vals[j*_nx+i] * bx * by);
}
void grad(double x, double y, int i, int j, double& dfdx, double& dfdy) const {
double dx = _xargs[i] - _xargs[i-1];
double dy = _yargs[j] - _yargs[j-1];
double f00 = _vals[(j-1)*_nx+i-1];
double f01 = _vals[j*_nx+i-1];
double f10 = _vals[(j-1)*_nx+i];
double f11 = _vals[j*_nx+i];
double ax = (_xargs[i] - x) / (_xargs[i] - _xargs[i-1]);
double bx = 1.0 - ax;
double ay = (_yargs[j] - y) / (_yargs[j] - _yargs[j-1]);
double by = 1.0 - ay;
dfdx = ( (f10-f00)*ay + (f11-f01)*by ) / dx;
dfdy = ( (f01-f00)*ax + (f11-f10)*bx ) / dy;
}