-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnested_integrator.py
106 lines (87 loc) · 3.79 KB
/
nested_integrator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Copyright: Johannes Buchner (C) 2013-2017
Modular, Pythonic Implementation of Nested Sampling
"""
from __future__ import print_function
import numpy
from numpy import exp, log, log10, pi
import progressbar
from numpy import logaddexp
"""
Performs the Nested Sampling integration by calling the *sampler* multiple times
until the *tolerance* is reached, or the maximum number of likelihood evaluations
is exceeded.
:param sampler: Sampler
:param tolerance: uncertainty in log Z to compute to
:param max_samples: maximum number of likelihood evaluations (None for no limit)
@return dictionary containing the keys
logZ, logZerr: log evidence and uncertainty,
samples: all obtained samples,
weights: posterior samples:
list of prior coordinates, transformed coordinates, likelihood value
and weight
information: information H
niterations: number of nested sampling iterations
"""
def nested_integrator(sampler, terminationcriterion, check_every=10,
max_samples=None):
logVolremaining = 0
logwidth = log(1 - exp(-1. / sampler.nlive_points))
weights = [] #[-1e300, 1]]
convergence_tests = []
widgets = ['|...|',
progressbar.Bar(), progressbar.Percentage(), progressbar.AdaptiveETA()]
pbar = progressbar.ProgressBar(widgets = widgets)
i = 0
ui, xi, Li = next(sampler)
wi = logwidth + Li
logZ = wi
H = Li - logZ
pbar.currval = i
max_value = sampler.nlive_points
pbar.start()
while True:
i = i + 1
logwidth = log(1 - exp(-1. / sampler.nlive_points)) + logVolremaining
logVolremaining -= 1. / sampler.nlive_points
weights.append([ui, xi, Li, logwidth])
logZerr = (H / sampler.nlive_points)**0.5
pbar.update(i)
# expected number of iterations:
i_final = -sampler.nlive_points * (-sampler.Lmax + log(exp(max(0.5 - logZerr, logZerr / 100.) + logZ) - exp(logZ) + 1e-300))
max_value = min(max(i+1, i_final), i+100000)
if hasattr(pbar, 'max_value'): pbar.max_value = max_value
if hasattr(pbar, 'maxval'): pbar.maxval = max_value
if i == 1 or (i > sampler.nlive_points and i % check_every == 1):
terminationcriterion.update(sampler, logwidth, logVolremaining, logZ, H, sampler.Lmax)
total_error = terminationcriterion.totalZerr
if max_samples is not None and int(max_samples) < int(sampler.ndraws):
pbar.finish()
print('maximum number of samples reached')
break
if terminationcriterion.converged:
pbar.finish()
print('tolerance on error reached: total=%.4f stat=%.4f remainder=%.4f' % (terminationcriterion.totalZerr, terminationcriterion.normalZerr, terminationcriterion.remainderZerr))
break
# we want to make maxContribution as small as possible
# but if it becomes 10% of logZerr, that is enough
if terminationcriterion.remainderZerr < logZerr / 10.:
pbar.finish()
print('tolerance will not improve: remainder error (%.3f) is much smaller than systematic errors (%.3f)' % (terminationcriterion.remainderZerr, logZerr))
break
widgets[0] = '|%d/%d samples+%d/%d|lnZ = %.2f +- %.3f + %.3f|L=%.2f @ %s' % (
i + 1, max_value, sampler.nlive_points, sampler.ndraws, terminationcriterion.totalZ, logZerr, terminationcriterion.remainderZerr, Li,
numpy.array_str(xi, max_line_width=1000, precision=4))
ui, xi, Li = next(sampler)
wi = logwidth + Li
logZnew = logaddexp(logZ, wi)
H = exp(wi - logZnew) * Li + exp(logZ - logZnew) * (H + logZ) - logZnew
logZ = logZnew
# not needed for integral, but for posterior samples, otherwise there
# is a hole in the most likely parameter ranges.
weights += [[ui, xi, Li, logwidth] for ui, xi, Li in sampler.remainder()]
totalZerr = terminationcriterion.totalZerr
return dict(logZ=terminationcriterion.totalZ, logZerr=totalZerr,
samples=sampler.samples, weights=weights, information=H,
niterations=i) #, convergence_tests=convergence_tests)
__all__ = [nested_integrator]