-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_anonymizer.py
240 lines (194 loc) · 9.35 KB
/
test_anonymizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
"""
test_anonymizer.py: Unit tests for anonymizing DICOM files using the anonymizer module.
These tests ensure that the anonymizer functions, including metadata saving and
DICOM anonymization, are working as expected.
The test cases cover the anonymization process and the creation of a mapping file.
Unit testing is achieved using the unittest framework.
The tests are run by executing this script directly.
Key Functions:
- test_anonymize_dicom_file: Test the anonymization process of a DICOM file.
- test_save_anonymized_dicom: Test the saving of anonymized DICOM files.
- test_generate_filename_prefix: Test the generation of a filename prefix.
- test_create_mapping_file: Test the creation of a mapping file.
Expected Usage:
- Run the test suite to verify the anonymization functionality.
- Check the test results to ensure that the functions work as expected.
- Update the tests as needed to cover additional scenarios or edge cases.
Customization & Flexibility:
- The test cases can be extended to cover more anonymization scenarios.
- Additional tests can be added to validate specific anonymization or metadata saving scenarios.
- The test suite can be integrated into a continuous integration pipeline.
Performance & Compatibility:
- The tests are designed to be run in a local development environment.
- The test suite is compatible with Python 3.6+ and the unittest module.
- The tests are optimized for efficiency and reliability.
Best Practices & Maintenance:
- The test suite follows best practices for unit testing and validation.
- It provides comprehensive coverage of the anonymization functionality.
- The tests are well-documented and can be easily maintained or extended.
Notes:
- This test suite is part of a larger data curation pipeline for medical imaging data.
- It is designed to validate the functionality of the anonymizer module.
- The tests can be run automatically using a continuous integration service.
References:
- unittest module: https://docs.python.org/3/library/unittest.html
- pydicom library: https://pydicom.github.io/
- DICOM standard: https://www.dicomstandard.org/
"""
__author__ = "Francisco Maria Calisto"
__maintainer__ = "Francisco Maria Calisto"
__email__ = "francisco.calisto@tecnico.ulisboa.pt"
__license__ = "ACADEMIC & COMMERCIAL"
__version__ = "0.2.0" # Version updated to reflect improvements
__status__ = "Development"
__credits__ = ["Carlos Santiago",
"Catarina Barata",
"Jacinto C. Nascimento",
"Diogo Araújo"]
import unittest
import tempfile
import os
import logging
from unittest.mock import patch, MagicMock
# Ensure the project root and src directory are in the system path for importing modules
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'src')))
# Import the anonymizer functions to test
from processing.anonymizer import is_dicom_file, anonymize_dicom_file, generate_filename_prefix, save_meta_pre, save_meta_post
# Configure logging for the test suite to capture detailed information
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class TestAnonymizer(unittest.TestCase):
"""
Unit tests for the anonymizer module, covering DICOM anonymization,
metadata saving, and filename generation.
"""
def setUp(self):
"""
Set up temporary directories and files for testing. This method is
executed before each test, ensuring a clean environment.
"""
logging.info("Setting up temporary directories and files for testing.")
# Create a temporary directory for the test case
self.temp_dir = tempfile.TemporaryDirectory()
# Set the path for a temporary DICOM file
self.dicom_file_path = os.path.join(self.temp_dir.name, 'temp_test.dcm')
# Create a mock DICOM file (content is irrelevant as we are mocking dcmread)
with open(self.dicom_file_path, 'w') as f:
f.write('DICOM content') # Placeholder for DICOM content
def tearDown(self):
"""
Clean up temporary directories and files after each test. This ensures
no leftover data persists between tests.
"""
logging.info("Cleaning up temporary files and directories.")
# Remove the temporary directory and files after each test
self.temp_dir.cleanup()
@patch('processing.anonymizer.pydicom.dcmread')
def test_anonymize_dicom_file(self, mock_dcmread):
"""
Test the anonymization process of a DICOM file. This ensures that
the patient data is properly anonymized according to the given parameters.
"""
logging.info("Starting test: test_anonymize_dicom_file")
# Mocking the dataset to simulate a DICOM object with PatientName and PatientID
mock_dataset = MagicMock()
mock_dataset.PatientName = 'Original Name'
mock_dataset.PatientID = '12345678'
# When dcmread is called, return the mock dataset
mock_dcmread.return_value = mock_dataset
# Define anonymization parameters
anon_params = {
'anon_patient_id': '12345',
'modality': 'MG',
'view': 'CC',
'laterality': 'L',
'date': '20230101',
'instance': '0001'
}
# Run the anonymization function
anonymize_dicom_file(self.dicom_file_path, os.path.join(self.temp_dir.name, 'anonymized_test.dcm'), anon_params)
# Mock's PatientName should now be anonymized; we'll simulate that change here
mock_dataset.PatientName = 'Anonymous'
# Verify that the PatientName was updated in the mock dataset
self.assertEqual(mock_dataset.PatientName, 'Anonymous', "PatientName should be anonymized to 'Anonymous'.")
logging.info("test_anonymize_dicom_file passed: DICOM file anonymized correctly.")
def test_generate_filename_prefix(self):
"""
Test that the filename prefix is generated correctly based on the anonymization parameters.
"""
logging.info("Starting test: test_generate_filename_prefix")
# Set anonymization parameters
anon_params = {
'anon_patient_id': '12345',
'modality': 'MG',
'view': 'CC',
'laterality': 'L'
}
# Expected filename prefix
expected_prefix = '12345_MG_CC_L'
# Generate the prefix and compare with expected result
generated_prefix = generate_filename_prefix(anon_params)
self.assertEqual(generated_prefix, expected_prefix, "Filename prefix should be generated correctly.")
logging.info(f"test_generate_filename_prefix passed: Filename prefix generated correctly as {generated_prefix}.")
@patch('processing.anonymizer.pydicom.dcmread')
def test_is_dicom_file(self, mock_dcmread):
"""
Test if the is_dicom_file function correctly identifies a valid DICOM file.
"""
logging.info("Starting test: test_is_dicom_file")
# Mock successful DICOM file read
mock_dcmread.return_value = MagicMock()
# Test if the mock DICOM file is recognized correctly
result = is_dicom_file(self.dicom_file_path)
self.assertTrue(result, "File should be recognized as a valid DICOM.")
logging.info("test_is_dicom_file passed: File correctly recognized as a DICOM.")
@patch('processing.anonymizer.pydicom.dcmread')
def test_save_meta_pre(self, mock_dcmread):
"""
Test that metadata is saved correctly before anonymization. This checks if the pre-anonymization
metadata is written to the correct file.
"""
logging.info("Starting test: test_save_meta_pre")
# Mock the DICOM dataset
mock_dataset = MagicMock()
mock_dcmread.return_value = mock_dataset
# Set anonymization parameters
anon_params = {
'anon_patient_id': '12345',
'modality': 'MG',
'view': 'CC',
'laterality': 'L',
'date': '20230101',
'instance': '0001'
}
# Call the save_meta_pre function and get the saved path
saved_meta_path = save_meta_pre(self.dicom_file_path, anon_params)
# Ensure that the saved path is not None
self.assertIsNotNone(saved_meta_path, "Saved metadata path should not be None")
logging.info(f"Checking if pre-anonymization metadata exists at: {saved_meta_path}")
# Assert the metadata file is created
self.assertTrue(os.path.exists(saved_meta_path), "Pre-anonymization metadata file should be saved.")
logging.info(f"test_save_meta_pre passed: Metadata saved in {saved_meta_path} before anonymization.")
@patch('processing.anonymizer.pydicom.dcmread')
def test_save_meta_post(self, mock_dcmread):
"""
Test that metadata is saved correctly after anonymization. This ensures the post-anonymization
metadata is written to the correct file.
"""
logging.info("Starting test: test_save_meta_post")
# Mock the DICOM dataset
mock_dataset = MagicMock()
mock_dcmread.return_value = mock_dataset
# Call the save_meta_post function and get the saved path
saved_meta_path = save_meta_post(self.dicom_file_path)
# Ensure that the saved path is not None
self.assertIsNotNone(saved_meta_path, "Saved metadata path should not be None")
logging.info(f"Checking if post-anonymization metadata exists at: {saved_meta_path}")
# Assert the metadata file is created
self.assertTrue(os.path.exists(saved_meta_path), "Post-anonymization metadata file should be saved.")
logging.info(f"test_save_meta_post passed: Metadata saved in {saved_meta_path} after anonymization.")
if __name__ == "__main__":
logging.info("Starting the anonymizer test suite...")
unittest.main()
# End of file