-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathalgorithm.py
executable file
·100 lines (82 loc) · 3.35 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python3
import argparse
import json
import sys
import numpy as np
import pandas as pd
from dataclasses import dataclass
from pyod.models.lof import LOF
from numpy.lib.stride_tricks import sliding_window_view
@dataclass
class CustomParameters:
window_size: int = 100
n_neighbors: int = 20
leaf_size: int = 30
distance_metric_order: int = 2
n_jobs: int = 1
algorithm: str = "auto" # using default is fine
distance_metric: str = "minkowski" # using default is fine
random_state: int = 42
use_column_index: int = 0
class AlgorithmArgs(argparse.Namespace):
@staticmethod
def from_sys_args() -> 'AlgorithmArgs':
args: dict = json.loads(sys.argv[1])
custom_parameter_keys = dir(CustomParameters())
filtered_parameters = dict(filter(lambda x: x[0] in custom_parameter_keys, args.get("customParameters", {}).items()))
args["customParameters"] = CustomParameters(**filtered_parameters)
return AlgorithmArgs(**args)
def set_random_state(config: AlgorithmArgs) -> None:
seed = config.customParameters.random_state
import random
random.seed(seed)
np.random.seed(seed)
def load_data(config: AlgorithmArgs) -> np.ndarray:
df = pd.read_csv(config.dataInput)
column_index = 0
if config.customParameters.use_column_index is not None:
column_index = config.customParameters.use_column_index
max_column_index = df.shape[1] - 3
if column_index > max_column_index:
print(f"Selected column index {column_index} is out of bounds (columns = {df.columns.values}; "
f"max index = {max_column_index} [column '{df.columns[max_column_index + 1]}'])! "
"Using last channel!", file=sys.stderr)
column_index = max_column_index
# jump over index column (timestamp)
column_index += 1
data = df.iloc[:, column_index].values
labels = df.iloc[:, -1].values
contamination = labels.sum() / len(labels)
# Use smallest positive float as contamination if there are no anomalies in dataset
contamination = np.nextafter(0, 1) if contamination == 0. else contamination
return data, contamination
def main(config: AlgorithmArgs):
set_random_state(config)
data, contamination = load_data(config)
# preprocess data
data = sliding_window_view(data, window_shape=config.customParameters.window_size)
clf = LOF(
contamination=contamination,
n_neighbors=config.customParameters.n_neighbors,
leaf_size=config.customParameters.leaf_size,
n_jobs=config.customParameters.n_jobs,
algorithm=config.customParameters.algorithm,
metric=config.customParameters.distance_metric,
metric_params=None,
p=config.customParameters.distance_metric_order,
)
clf.fit(data)
scores = clf.decision_scores_
np.savetxt(config.dataOutput, scores, delimiter=",")
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Wrong number of arguments specified; expected a single json-string!")
exit(1)
config = AlgorithmArgs.from_sys_args()
print(f"Config: {config}")
if config.executionType == "train":
print("Nothing to train, finished!")
elif config.executionType == "execute":
main(config)
else:
raise ValueError(f"Unknown execution type '{config.executionType}'; expected either 'train' or 'execute'!")