|
| 1 | +""" |
| 2 | +
|
| 3 | +Object clustering with k-means algorithm |
| 4 | +
|
| 5 | +author: Atsushi Sakai (@Atsushi_twi) |
| 6 | +
|
| 7 | +""" |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import math |
| 11 | +import matplotlib.pyplot as plt |
| 12 | +import random |
| 13 | + |
| 14 | +show_animation = True |
| 15 | + |
| 16 | + |
| 17 | +class Clusters: |
| 18 | + |
| 19 | + def __init__(self, x, y, nlabel): |
| 20 | + self.x = x |
| 21 | + self.y = y |
| 22 | + self.ndata = len(self.x) |
| 23 | + self.nlabel = nlabel |
| 24 | + self.labels = [random.randint(0, nlabel - 1) |
| 25 | + for _ in range(self.ndata)] |
| 26 | + self.cx = [0.0 for _ in range(nlabel)] |
| 27 | + self.cy = [0.0 for _ in range(nlabel)] |
| 28 | + |
| 29 | + |
| 30 | +def kmeans_clustering(rx, ry, nc): |
| 31 | + |
| 32 | + clusters = Clusters(rx, ry, nc) |
| 33 | + clusters = calc_centroid(clusters) |
| 34 | + |
| 35 | + MAX_LOOP = 10 |
| 36 | + DCOST_TH = 0.1 |
| 37 | + pcost = 100.0 |
| 38 | + for loop in range(MAX_LOOP): |
| 39 | + # print("Loop:", loop) |
| 40 | + clusters, cost = update_clusters(clusters) |
| 41 | + clusters = calc_centroid(clusters) |
| 42 | + |
| 43 | + dcost = abs(cost - pcost) |
| 44 | + if dcost < DCOST_TH: |
| 45 | + break |
| 46 | + pcost = cost |
| 47 | + |
| 48 | + return clusters |
| 49 | + |
| 50 | + |
| 51 | +def calc_centroid(clusters): |
| 52 | + |
| 53 | + for ic in range(clusters.nlabel): |
| 54 | + x, y = calc_labeled_points(ic, clusters) |
| 55 | + ndata = len(x) |
| 56 | + clusters.cx[ic] = sum(x) / ndata |
| 57 | + clusters.cy[ic] = sum(y) / ndata |
| 58 | + |
| 59 | + return clusters |
| 60 | + |
| 61 | + |
| 62 | +def update_clusters(clusters): |
| 63 | + cost = 0.0 |
| 64 | + |
| 65 | + for ip in range(clusters.ndata): |
| 66 | + px = clusters.x[ip] |
| 67 | + py = clusters.y[ip] |
| 68 | + |
| 69 | + dx = [icx - px for icx in clusters.cx] |
| 70 | + dy = [icy - py for icy in clusters.cy] |
| 71 | + |
| 72 | + dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)] |
| 73 | + mind = min(dlist) |
| 74 | + min_id = dlist.index(mind) |
| 75 | + clusters.labels[ip] = min_id |
| 76 | + cost += min_id |
| 77 | + |
| 78 | + return clusters, cost |
| 79 | + |
| 80 | + |
| 81 | +def calc_labeled_points(ic, clusters): |
| 82 | + |
| 83 | + inds = np.array([i for i in range(clusters.ndata) |
| 84 | + if clusters.labels[i] == ic]) |
| 85 | + tx = np.array(clusters.x) |
| 86 | + ty = np.array(clusters.y) |
| 87 | + |
| 88 | + x = tx[inds] |
| 89 | + y = ty[inds] |
| 90 | + |
| 91 | + return x, y |
| 92 | + |
| 93 | + |
| 94 | +def calc_raw_data(cx, cy, npoints, rand_d): |
| 95 | + |
| 96 | + rx, ry = [], [] |
| 97 | + |
| 98 | + for (icx, icy) in zip(cx, cy): |
| 99 | + for _ in range(npoints): |
| 100 | + rx.append(icx + rand_d * (random.random() - 0.5)) |
| 101 | + ry.append(icy + rand_d * (random.random() - 0.5)) |
| 102 | + |
| 103 | + return rx, ry |
| 104 | + |
| 105 | + |
| 106 | +def update_positions(cx, cy): |
| 107 | + |
| 108 | + DX1 = 0.4 |
| 109 | + DY1 = 0.5 |
| 110 | + |
| 111 | + cx[0] += DX1 |
| 112 | + cy[0] += DY1 |
| 113 | + |
| 114 | + DX2 = -0.3 |
| 115 | + DY2 = -0.5 |
| 116 | + |
| 117 | + cx[1] += DX2 |
| 118 | + cy[1] += DY2 |
| 119 | + |
| 120 | + return cx, cy |
| 121 | + |
| 122 | + |
| 123 | +def calc_association(cx, cy, clusters): |
| 124 | + |
| 125 | + inds = [] |
| 126 | + |
| 127 | + for ic in range(len(cx)): |
| 128 | + tcx = cx[ic] |
| 129 | + tcy = cy[ic] |
| 130 | + |
| 131 | + dx = [icx - tcx for icx in clusters.cx] |
| 132 | + dy = [icy - tcy for icy in clusters.cy] |
| 133 | + |
| 134 | + dlist = [math.sqrt(idx**2 + idy**2) for (idx, idy) in zip(dx, dy)] |
| 135 | + min_id = dlist.index(min(dlist)) |
| 136 | + inds.append(min_id) |
| 137 | + |
| 138 | + return inds |
| 139 | + |
| 140 | + |
| 141 | +def main(): |
| 142 | + print(__file__ + " start!!") |
| 143 | + |
| 144 | + cx = [0.0, 8.0] |
| 145 | + cy = [0.0, 8.0] |
| 146 | + npoints = 10 |
| 147 | + rand_d = 3.0 |
| 148 | + ncluster = 2 |
| 149 | + sim_time = 15.0 |
| 150 | + dt = 1.0 |
| 151 | + time = 0.0 |
| 152 | + |
| 153 | + while time <= sim_time: |
| 154 | + print("Time:", time) |
| 155 | + time += dt |
| 156 | + |
| 157 | + # simulate objects |
| 158 | + cx, cy = update_positions(cx, cy) |
| 159 | + rx, ry = calc_raw_data(cx, cy, npoints, rand_d) |
| 160 | + |
| 161 | + clusters = kmeans_clustering(rx, ry, ncluster) |
| 162 | + |
| 163 | + # for animation |
| 164 | + if show_animation: |
| 165 | + plt.cla() |
| 166 | + inds = calc_association(cx, cy, clusters) |
| 167 | + for ic in inds: |
| 168 | + x, y = calc_labeled_points(ic, clusters) |
| 169 | + plt.plot(x, y, "x") |
| 170 | + plt.plot(cx, cy, "o") |
| 171 | + plt.xlim(-2.0, 10.0) |
| 172 | + plt.ylim(-2.0, 10.0) |
| 173 | + plt.pause(dt) |
| 174 | + |
| 175 | + print("Done") |
| 176 | + |
| 177 | + |
| 178 | +if __name__ == '__main__': |
| 179 | + main() |
0 commit comments