Skip to content

Commit cd876c0

Browse files
committed
can generate shorest path
1 parent 67aec55 commit cd876c0

File tree

1 file changed

+244
-0
lines changed

1 file changed

+244
-0
lines changed
Lines changed: 244 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,244 @@
1+
"""
2+
3+
Probablistic Road Map (PRM) Planner
4+
5+
author: Atsushi Sakai (@Atsushi_twi)
6+
7+
"""
8+
9+
import random
10+
import math
11+
import numpy as np
12+
import matplotlib.pyplot as plt
13+
from matplotrecorder import matplotrecorder
14+
from pyfastnns import pyfastnns
15+
matplotrecorder.donothing = True
16+
17+
# parameter
18+
N_SAMPLE = 500
19+
N_KNN = 10
20+
MAX_EDGE_LEN = 30.0 # [m] Maximum edge length
21+
22+
23+
class Node:
24+
25+
def __init__(self, x, y, cost, pind):
26+
self.x = x
27+
self.y = y
28+
self.cost = cost
29+
self.pind = pind
30+
31+
def __str__(self):
32+
return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)
33+
34+
35+
def PRM_planning(sx, sy, gx, gy, ox, oy, rr):
36+
37+
sample_x, sample_y = sample_points(sx, sy, gx, gy, rr, ox, oy)
38+
plt.plot(sample_x, sample_y, ".r")
39+
40+
road_map = generate_roadmap(sample_x, sample_y, rr)
41+
42+
rx, ry = dijkstra_planning(
43+
sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y)
44+
45+
return rx, ry
46+
47+
48+
def generate_roadmap(sample_x, sample_y, rr):
49+
50+
road_map = []
51+
nsample = len(sample_x)
52+
skdtree = pyfastnns.NNS(np.vstack((sample_x, sample_y)).T)
53+
54+
for (i, ix, iy) in zip(range(nsample), sample_x, sample_y):
55+
56+
index = skdtree.search(
57+
np.matrix([ix, iy]).T, k=nsample)
58+
edge_id = []
59+
60+
for ii in range(1, len(index[0][0][0])):
61+
# nx = sample_x[index[i]]
62+
# ny = sample_y[index[i]]
63+
64+
# if !is_collision(ix, iy, nx, ny, rr, okdtree)
65+
edge_id.append(index[0][0][0][ii])
66+
if len(edge_id) >= N_KNN:
67+
break
68+
69+
road_map.append(edge_id)
70+
71+
# plot_road_map(road_map, sample_x, sample_y)
72+
73+
return road_map
74+
75+
76+
def dijkstra_planning(sx, sy, gx, gy, ox, oy, rr, road_map, sample_x, sample_y):
77+
"""
78+
gx: goal x position [m]
79+
gx: goal x position [m]
80+
ox: x position list of Obstacles [m]
81+
oy: y position list of Obstacles [m]
82+
reso: grid resolution [m]
83+
rr: robot radius[m]
84+
"""
85+
86+
nstart = Node(sx, sy, 0.0, -1)
87+
ngoal = Node(gx, gy, 0.0, -1)
88+
89+
openset, closedset = dict(), dict()
90+
openset[len(road_map) - 2] = nstart
91+
92+
while True:
93+
if len(openset) == 0:
94+
print("Cannot find path")
95+
break
96+
97+
print(len(openset), len(closedset))
98+
99+
c_id = min(openset, key=lambda o: openset[o].cost)
100+
current = openset[c_id]
101+
print("current", current, c_id)
102+
# input()
103+
104+
# show graph
105+
plt.plot(current.x, current.y, "xc")
106+
if len(closedset.keys()) % 10 == 0:
107+
plt.pause(0.001)
108+
matplotrecorder.save_frame()
109+
110+
if c_id == (len(road_map) - 1):
111+
print("Find goal")
112+
ngoal.pind = current.pind
113+
ngoal.cost = current.cost
114+
break
115+
116+
# Remove the item from the open set
117+
del openset[c_id]
118+
# Add it to the closed set
119+
closedset[c_id] = current
120+
121+
# expand search grid based on motion model
122+
for i in range(len(road_map[c_id])):
123+
n_id = road_map[c_id][i]
124+
print(i, n_id)
125+
dx = sample_x[n_id] - current.x
126+
dy = sample_y[n_id] - current.y
127+
d = math.sqrt(dx**2 + dy**2)
128+
node = Node(sample_x[n_id], sample_y[n_id],
129+
current.cost + d, c_id)
130+
131+
# if not verify_node(node, obmap, minx, miny, maxx, maxy):
132+
# continue
133+
134+
if n_id in closedset:
135+
continue
136+
# Otherwise if it is already in the open set
137+
if n_id in openset:
138+
if openset[n_id].cost > node.cost:
139+
openset[n_id].cost = node.cost
140+
openset[n_id].pind = c_id
141+
else:
142+
openset[n_id] = node
143+
144+
# generate final course
145+
rx, ry = [ngoal.x], [ngoal.y]
146+
pind = ngoal.pind
147+
while pind != -1:
148+
n = closedset[pind]
149+
rx.append(n.x)
150+
ry.append(n.y)
151+
pind = n.pind
152+
153+
return rx, ry
154+
155+
156+
def plot_road_map(road_map, sample_x, sample_y):
157+
158+
for i in range(len(road_map)):
159+
for ii in range(len(road_map[i])):
160+
ind = road_map[i][ii]
161+
162+
plt.plot([sample_x[i], sample_x[ind]],
163+
[sample_y[i], sample_y[ind]], "-k")
164+
165+
166+
def sample_points(sx, sy, gx, gy, rr, ox, oy):
167+
maxx = max(ox)
168+
maxy = max(oy)
169+
minx = min(ox)
170+
miny = min(oy)
171+
172+
sample_x, sample_y = [], []
173+
174+
nns = pyfastnns.NNS(np.vstack((ox, oy)).T)
175+
176+
while len(sample_x) <= N_SAMPLE:
177+
tx = (random.random() - minx) * (maxx - minx)
178+
ty = (random.random() - miny) * (maxy - miny)
179+
180+
index, dist = nns.search(np.matrix([tx, ty]).T)
181+
182+
if dist[0] >= rr:
183+
sample_x.append(tx)
184+
sample_y.append(ty)
185+
186+
sample_x.append(sx)
187+
sample_y.append(sy)
188+
sample_x.append(gx)
189+
sample_y.append(gy)
190+
191+
return sample_x, sample_y
192+
193+
194+
def main():
195+
print(__file__ + " start!!")
196+
197+
# start and goal position
198+
sx = 10.0 # [m]
199+
sy = 10.0 # [m]
200+
gx = 50.0 # [m]
201+
gy = 50.0 # [m]
202+
robot_size = 5.0 # [m]
203+
204+
ox = []
205+
oy = []
206+
207+
for i in range(60):
208+
ox.append(i)
209+
oy.append(0.0)
210+
for i in range(60):
211+
ox.append(60.0)
212+
oy.append(i)
213+
for i in range(61):
214+
ox.append(i)
215+
oy.append(60.0)
216+
for i in range(61):
217+
ox.append(0.0)
218+
oy.append(i)
219+
for i in range(40):
220+
ox.append(20.0)
221+
oy.append(i)
222+
for i in range(40):
223+
ox.append(40.0)
224+
oy.append(60.0 - i)
225+
226+
plt.plot(ox, oy, ".k")
227+
plt.plot(sx, sy, "xr")
228+
plt.plot(gx, gy, "xb")
229+
plt.grid(True)
230+
plt.axis("equal")
231+
232+
rx, ry = PRM_planning(sx, sy, gx, gy, ox, oy, robot_size)
233+
234+
plt.plot(rx, ry, "-r")
235+
236+
for i in range(20):
237+
matplotrecorder.save_frame()
238+
plt.show()
239+
240+
matplotrecorder.save_movie("animation.gif", 0.1)
241+
242+
243+
if __name__ == '__main__':
244+
main()

0 commit comments

Comments
 (0)