-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_pcc.py
executable file
·312 lines (267 loc) · 10.1 KB
/
train_pcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import json
import os
import random
import time
from os import path
import numpy as np
import torch
import torch.optim as optim
from datasets import CartPoleDataset, PendulumDataset, PlanarDataset, ThreePoleDataset
from latent_map_planar import draw_latent_map
from losses import KL, ae_loss, bernoulli, curvature, entropy, gaussian, vae_bound
from mdp.plane_obstacles_mdp import PlanarObstaclesMDP
from pcc_model import PCC
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
torch.set_default_dtype(torch.float64)
device = torch.device("cuda")
datasets = {
"planar": PlanarDataset,
"pendulum": PendulumDataset,
"cartpole": CartPoleDataset,
"threepole": ThreePoleDataset,
}
dims = {
"planar": (1600, 2, 2),
"pendulum": (4608, 3, 1),
"cartpole": ((2, 80, 80), 8, 1),
"threepole": ((2, 80, 80), 8, 3),
}
def seed_torch(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def compute_loss(
model,
armotized,
x,
u,
x_next,
p_x_next,
q_z_backward,
p_z,
q_z_next,
z_next,
p_z_next,
z,
p_x,
p_x_next_determ,
lam=(1.0, 8.0, 8.0),
delta=0.1,
vae_coeff=0.01,
determ_coeff=0.3,
):
# prediction and consistency loss
pred_loss = -bernoulli(x_next, p_x_next) + KL(q_z_backward, p_z) - entropy(q_z_next) - gaussian(z_next, p_z_next)
consis_loss = -entropy(q_z_next) - gaussian(z_next, p_z_next) + KL(q_z_backward, p_z)
# curvature loss
cur_loss = curvature(model, z, u, delta, armotized)
# additional vae loss
vae_loss = vae_bound(x, p_x, p_z)
# additional deterministic loss
determ_loss = -bernoulli(x_next, p_x_next_determ)
lam_p, lam_c, lam_cur = lam
return (
pred_loss,
consis_loss,
cur_loss,
lam_p * pred_loss
+ lam_c * consis_loss
+ lam_cur * cur_loss
+ vae_coeff * vae_loss
+ determ_coeff * determ_loss,
)
def train(model, env_name, train_loader, lam, vae_coeff, determ_coeff, optimizer, armotized, epoch):
avg_pred_loss = 0.0
avg_consis_loss = 0.0
avg_cur_loss = 0.0
avg_loss = 0.0
avg_ae_loss = 0.0
num_batches = len(train_loader)
model.train()
start = time.time()
for x, u, x_next in train_loader:
x = x.to(device).double()
u = u.to(device).double()
x_next = x_next.to(device).double()
optimizer.zero_grad()
p_x_next, q_z_backward, p_z, q_z_next, z_next, p_z_next, z_p, u, p_x, p_x_next_determ = model(x, u, x_next)
x = x.view(x.size(0), -1)
x_next = x_next.view(x_next.size(0), -1)
if env_name == "planar" and epoch < 100: # warm up using autoencoder
pred_loss, consis_loss, cur_loss = torch.zeros(1), torch.zeros(1), torch.zeros(1)
loss = ae_loss(x, p_x)
avg_ae_loss += loss.item()
else:
pred_loss, consis_loss, cur_loss, loss = compute_loss(
model,
armotized,
x,
u,
x_next,
p_x_next,
q_z_backward,
p_z,
q_z_next,
z_next,
p_z_next,
z_p,
p_x,
p_x_next_determ,
lam=lam,
vae_coeff=vae_coeff,
determ_coeff=determ_coeff,
)
loss.backward()
# clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
avg_pred_loss += pred_loss.item()
avg_consis_loss += consis_loss.item()
avg_cur_loss += cur_loss.item()
avg_loss += loss
avg_pred_loss /= num_batches
avg_consis_loss /= num_batches
avg_cur_loss /= num_batches
avg_loss /= num_batches
end = time.time()
print("Training time: %f" % (end - start))
if (epoch + 1) % 1 == 0:
if env_name == "planar" and epoch < 100:
print("AE loss epoch %d: %f" % (epoch + 1, avg_ae_loss))
print("---------------------------")
else:
print("Epoch %d" % (epoch + 1))
print("Prediction loss: %f" % (avg_pred_loss))
print("Consistency loss: %f" % (avg_consis_loss))
print("Curvature loss: %f" % (avg_cur_loss))
print("Training loss: %f" % (avg_loss))
print("--------------------------------------")
return avg_pred_loss, avg_consis_loss, avg_cur_loss, avg_loss
def main(args):
env_name = args.env
assert env_name in ["planar", "pendulum", "cartpole", "threepole"]
armotized = args.armotized
log_dir = args.log_dir
seed = args.seed
data_size = args.data_size
noise_level = args.noise
batch_size = args.batch_size
lam_p = args.lam_p
lam_c = args.lam_c
lam_cur = args.lam_cur
lam = (lam_p, lam_c, lam_cur)
vae_coeff = args.vae_coeff
determ_coeff = args.determ_coeff
lr = args.lr
weight_decay = args.decay
epoches = args.num_iter
iter_save = args.iter_save
save_map = args.save_map
seed_torch(seed)
def _init_fn(worker_id):
np.random.seed(int(seed))
dataset = datasets[env_name]
data = dataset(sample_size=data_size, noise=noise_level)
data_loader = DataLoader(
data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4, worker_init_fn=_init_fn
)
x_dim, z_dim, u_dim = dims[env_name]
model = PCC(armotized=armotized, x_dim=x_dim, z_dim=z_dim, u_dim=u_dim, env=env_name).to(device)
if env_name == "planar" and save_map:
mdp = PlanarObstaclesMDP(noise=noise_level)
optimizer = optim.Adam(model.parameters(), betas=(0.9, 0.999), eps=1e-8, lr=lr, weight_decay=weight_decay)
log_path = "logs/" + env_name + "/" + log_dir
if not path.exists(log_path):
os.makedirs(log_path)
writer = SummaryWriter(log_path)
result_path = "result/" + env_name + "/" + log_dir
if not path.exists(result_path):
os.makedirs(result_path)
with open(result_path + "/settings", "w") as f:
json.dump(args.__dict__, f, indent=2)
if env_name == "planar" and save_map:
latent_maps = [draw_latent_map(model, mdp)]
for i in range(epoches):
avg_pred_loss, avg_consis_loss, avg_cur_loss, avg_loss = train(
model, env_name, data_loader, lam, vae_coeff, determ_coeff, optimizer, armotized, i
)
# ...log the running loss
writer.add_scalar("prediction loss", avg_pred_loss, i)
writer.add_scalar("consistency loss", avg_consis_loss, i)
writer.add_scalar("curvature loss", avg_cur_loss, i)
writer.add_scalar("training loss", avg_loss, i)
if env_name == "planar" and save_map:
if (i + 1) % 10 == 0:
map_i = draw_latent_map(model, mdp)
latent_maps.append(map_i)
# save model
if (i + 1) % iter_save == 0:
print("Saving the model.............")
torch.save(model.state_dict(), result_path + "/model_" + str(i + 1))
with open(result_path + "/loss_" + str(i + 1), "w") as f:
f.write(
"\n".join(
[
"Prediction loss: " + str(avg_pred_loss),
"Consistency loss: " + str(avg_consis_loss),
"Curvature loss: " + str(avg_cur_loss),
"Training loss: " + str(avg_loss),
]
)
)
if env_name == "planar" and save_map:
latent_maps[0].save(
result_path + "/latent_map.gif",
format="GIF",
append_images=latent_maps[1:],
save_all=True,
duration=100,
loop=0,
)
writer.close()
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="train pcc model")
parser.add_argument("--env", required=True, type=str, help="environment used for training")
parser.add_argument(
"--armotized",
required=True,
type=str2bool,
nargs="?",
const=True,
default=False,
help="type of dynamics model",
)
parser.add_argument("--log_dir", required=True, type=str, help="directory to save training log")
parser.add_argument("--seed", required=True, type=int, help="seed number")
parser.add_argument("--data_size", required=True, type=int, help="the bumber of data points used for training")
parser.add_argument("--noise", default=0, type=float, help="the level of noise")
parser.add_argument("--batch_size", default=128, type=int, help="batch size")
parser.add_argument("--lam_p", default=1.0, type=float, help="weight of prediction loss")
parser.add_argument("--lam_c", default=8.0, type=float, help="weight of consistency loss")
parser.add_argument("--lam_cur", default=8.0, type=float, help="weight of curvature loss")
parser.add_argument("--vae_coeff", default=0.01, type=float, help="coefficient of additional vae loss")
parser.add_argument("--determ_coeff", default=0.3, type=float, help="coefficient of addtional deterministic loss")
parser.add_argument("--lr", default=0.0005, type=float, help="learning rate")
parser.add_argument("--decay", default=0.001, type=float, help="L2 regularization")
parser.add_argument("--num_iter", default=2000, type=int, help="number of epoches")
parser.add_argument(
"--iter_save", default=1000, type=int, help="save model and result after this number of iterations"
)
parser.add_argument("--save_map", default=False, type=str2bool, help="save the latent map during training or not")
args = parser.parse_args()
main(args)