-
Notifications
You must be signed in to change notification settings - Fork 448
/
Copy pathautoencoder.py
63 lines (47 loc) · 2.69 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf
from keras.layers import Input, Dense
from keras.models import Model
from keras import regularizers
import pandas as pd
import numpy as np
class AutoEncoder:
def __init__(self, encoding_dim, input_shape):
self.encoding_dim = encoding_dim
self.input_shape = input_shape
def build_model(self, encoded1_shape, encoded2_shape, decoded1_shape, decoded2_shape):
input_data = Input(shape=(1, self.input_shape))
# encoded1 = Dense(encoded1_shape, activation="relu", activity_regularizer=regularizers.l2(0))(input_data)
# encoded2 = Dense(encoded2_shape, activation="relu", activity_regularizer=regularizers.l2(0))(encoded1)
# encoded3 = Dense(self.encoding_dim, activation="relu", activity_regularizer=regularizers.l2(0))(encoded2)
# decoded1 = Dense(decoded1_shape, activation="relu", activity_regularizer=regularizers.l2(0))(encoded3)
# decoded2 = Dense(decoded2_shape, activation="relu", activity_regularizer=regularizers.l2(0))(decoded1)
# decoded = Dense(self.input_shape, activation="sigmoid", activity_regularizer=regularizers.l2(0))(decoded2)
encoded3 = Dense(self.encoding_dim, activation="relu", activity_regularizer=regularizers.l2(0))(input_data)
decoded = Dense(self.input_shape, activation="sigmoid", activity_regularizer=regularizers.l2(0))(encoded3)
self.autoencoder = Model(inputs=input_data, outputs=decoded)
self.encoder = Model(input_data, encoded3)
def train_model(self, model, data, epochs, model_name, save_model=True):
model.compile(loss="mean_squared_error", optimizer="adam", metrics=['acc', 'mae'])
train = data
ntrain = np.array(train)
train_data = np.reshape(ntrain, (len(ntrain), 1, self.input_shape))
model.fit(train_data, train_data, epochs=epochs)
if save_model:
model.save(f"models/saved_models/{model_name}.h5")
def test_model(self, model, data):
test = data
ntest = np.array(test)
test_data = np.reshape(ntest, (len(ntest), 1, self.input_shape))
print(model.evaluate(test_data, test_data))
def encode_data(self, data, csv_path, save_csv=True):
coded_train = []
for i in range(len(data)):
curr_data = np.array(data.iloc[i, :])
values = np.reshape(curr_data, (1, 1, self.input_shape))
coded = self.encoder.predict(values)
shaped = np.reshape(coded, (20,))
coded_train.append(shaped)
train_coded = pd.DataFrame(coded_train, index=np.arange(len(coded_train)), columns=np.arange(20))
if save_csv:
train_coded.to_csv(f"{csv_path}")
return train_coded