-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorting.py
361 lines (280 loc) · 11.7 KB
/
sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from time import sleep
import visualizer as vs
test = False
class Array:
full_array = None
def plot(self):
if not test:
vs.plot(Array.full_array)
def set_all(self, values):
for i in range(len(self.values)):
self.values[i] = values[i]
for i in range(len(self.values)):
Array.full_array[self.lower_index + i] = values[i]
self.plot()
def __init__(self, values, lower_index=0):
self.lower_index = lower_index
self.values = list(values)
if Array.full_array == None:
Array.full_array = list(values)
self.plot()
def swap(self, index1, index2):
self.values[index2], self.values[index1] = self.values[index1], self.values[index2]
Array.full_array[self.lower_index + index2], Array.full_array[self.lower_index +
index1] = Array.full_array[self.lower_index + index1], Array.full_array[self.lower_index + index2]
self.plot()
def set(self, index, num):
self.values[index] = num
Array.full_array[self.lower_index + index] = num
self.plot()
def get_len(self):
return len(self.values)
def bubble_sort(nums): # n^2
# We set swapped to True so the loop looks runs at least once
swapped = True
while swapped:
swapped = False
for i in range(nums.get_len() - 1):
if nums.values[i] > nums.values[i + 1]:
# Swap the elements
nums.swap(i, i + 1)
# Set the flag to True so we'll loop again
swapped = True
def selection_sort(nums): # n^2
# This value of i corresponds to how many values were sorted
for i in range(nums.get_len()):
# We assume that the first item of the unsorted segment is the smallest
lowest_value_index = i
# This loop iterates over the unsorted items
for j in range(i + 1, nums.get_len()):
if nums.values[j] < nums.values[lowest_value_index]:
lowest_value_index = j
# Swap values of the lowest unsorted element with the first unsorted
# element
nums.swap(i, lowest_value_index)
def insertion_sort(nums): # n^2
# Start on the second element as we assume the first element is sorted
for i in range(1, nums.get_len()):
item_to_insert = nums.values[i]
# And keep a reference of the index of the previous element
j = i - 1
# Move all items of the sorted segment forward if they are larger than
# the item to insert
while j >= 0 and nums.values[j] > item_to_insert:
nums.set(j + 1, nums.values[j])
j -= 1
# Insert the item
nums.set(j + 1, item_to_insert)
def heap_sort(nums): # n * logn
def heapify(nums, heap_size, root_index):
# Assume the index of the largest element is the root index
largest = root_index
left_child = (2 * root_index) + 1
right_child = (2 * root_index) + 2
# If the left child of the root is a valid index, and the element is greater
# than the current largest element, then update the largest element
if left_child < heap_size and nums.values[left_child] > nums.values[largest]:
largest = left_child
# Do the same for the right child of the root
if right_child < heap_size and nums.values[right_child] > nums.values[largest]:
largest = right_child
# If the largest element is no longer the root element, swap them
if largest != root_index:
nums.swap(root_index, largest)
# Heapify the new root element to ensure it's the largest
heapify(nums, heap_size, largest)
n = nums.get_len()
# Create a Max Heap from the list
# The 2nd argument of range means we stop at the element before -1 i.e.
# the first element of the list.
# The 3rd argument of range means we iterate backwards, reducing the count
# of i by 1
for i in range(n, -1, -1):
heapify(nums, n, i)
# Move the root of the max heap to the end of
for i in range(n - 1, 0, -1):
nums.swap(i, 0)
heapify(nums, i, 0)
def merge_sort(nums, lower_index=0): # n * logn
def merge(left_list, right_list):
sorted_list = []
left_list_index = right_list_index = 0
# We use the list lengths often, so it's handy to make variables
left_list_length, right_list_length = len(left_list), len(right_list)
for _ in range(left_list_length + right_list_length):
if left_list_index < left_list_length and right_list_index < right_list_length:
# We check which value from the start of each list is smaller
# If the item at the beginning of the left list is smaller, add it
# to the sorted list
if left_list[left_list_index] <= right_list[right_list_index]:
sorted_list.append(left_list[left_list_index])
left_list_index += 1
# If the item at the beginning of the right list is smaller, add it
# to the sorted list
else:
sorted_list.append(right_list[right_list_index])
right_list_index += 1
# If we've reached the end of the of the left list, add the elements
# from the right list
elif left_list_index == left_list_length:
sorted_list.append(right_list[right_list_index])
right_list_index += 1
# If we've reached the end of the of the right list, add the elements
# from the left list
elif right_list_index == right_list_length:
sorted_list.append(left_list[left_list_index])
left_list_index += 1
return sorted_list
# If the list is a single element, return it
if nums.get_len() <= 1:
return nums.values
# Use floor division to get midpoint, indices must be integers
mid = nums.get_len() // 2
# Sort and merge each half
left_list = merge_sort(Array(nums.values[:mid], lower_index))
right_list = merge_sort(Array(nums.values[mid:], mid), mid)
nums.set_all(left_list + right_list)
# Merge the sorted lists into a new one
sorted_list = merge(left_list, right_list)
nums.set_all(sorted_list)
return sorted_list
def quick_sort(nums): # n^2
def partition(nums, low, high):
# We select the middle element to be the pivot. Some implementations select
# the first element or the last element. Sometimes the median value becomes
# the pivot, or a random one. There are many more strategies that can be
# chosen or created.
pivot = nums.values[(low + high) // 2]
i = low - 1
j = high + 1
while True:
i += 1
while nums.values[i] < pivot:
i += 1
j -= 1
while nums.values[j] > pivot:
j -= 1
if i >= j:
return j
# If an element at i (on the left of the pivot) is larger than the
# element at j (on right right of the pivot), then swap them
nums.swap(j, i)
# Create a helper function that will be called recursively
def _quick_sort(items, low, high):
if low < high:
# This is the index after the pivot, where our lists are split
split_index = partition(items, low, high)
_quick_sort(items, low, split_index)
_quick_sort(items, split_index + 1, high)
_quick_sort(nums, 0, nums.get_len() - 1)
def cocktail_sort(nums):
n = num.get_len()
swapped = True
start = 0
end = n-1
while (swapped == True):
# reset the swapped flag on entering the loop,
# because it might be true from a previous
# iteration.
swapped = False
# loop from left to right same as the bubble sort
for i in range (start, end):
if (num[i] > num[i + 1]) :
num.swap(i, i+1)
swapped = True
# if nothing moved, then array is sorted.
if (swapped == False):
break
# otherwise, reset the swapped flag so that it
# can be used in the next stage
swapped = False
# move the end point back by one, because
# item at the end is in its rightful spot
end = end-1
# from right to left, doing the same
# comparison as in the previous stage
for i in range(end-1, start-1, -1):
if (num[i] > num[i + 1]):
num.swap(i, i+1)
swapped = True
# increase the starting point, because
# the last stage would have moved the next
# smallest number to its rightful spot.
start = start + 1
def cycle_sort(nums):
writes = 0
# Loop through the array to find cycles to rotate.
for cycleStart in range(0, nums.get_len() - 1):
item = nums[cycleStart]
# Find where to put the item.
pos = cycleStart
for i in range(cycleStart + 1, nums.get_len()):
if nums[i] < item:
pos += 1
# If the item is already there, this is not a cycle.
if pos == cycleStart:
continue
# Otherwise, put the item there or right after any duplicates.
while item == nums[pos]:
pos += 1
nums[pos], item = item, nums[pos]
writes += 1
# Rotate the rest of the cycle.
while pos != cycleStart:
# Find where to put the item.
pos = cycleStart
for i in range(cycleStart + 1, nums.get_len()):
if array[i] < item:
pos += 1
# Put the item there or right after any duplicates.
while item == nums[pos]:
pos += 1
nums[pos], item = item, nums[pos]
writes += 1
return writes
def getNextGap(gap):
# Shrink gap by Shrink factor
gap = (gap * 10)/13
if gap < 1:
return 1
return gap
# Function to sort arr[] using Comb Sort
def comb_sort(nums):
n = nums.get_len()
# Initialize gap
gap = n
# Initialize swapped as true to make sure that
# loop runs
swapped = True
# Keep running while gap is more than 1 and last
# iteration caused a swap
while gap !=1 or swapped == 1:
# Find next gap
gap = getNextGap(gap)
# Initialize swapped as false so that we can
# check if swap happened or not
swapped = False
# Compare all elements with current gap
for i in range(0, n-gap):
if nums[i] > nums[i + gap]:
nums.swap(i, i+gap)
swapped = True
def pigeonhole_sort(nums):
# size of range of values in the list
# (ie, number of pigeonholes we need)
my_min = min(nums)
my_max = max(nums)
size = my_max - my_min + 1
# our list of pigeonholes
holes = [0] * size
# Populate the pigeonholes.
for x in nums:
assert type(x) is int, "integers only please"
holes[x - my_min] += 1
# Put the elements back into the array in order.
i = 0
for count in range(size):
while holes[count] > 0:
holes[count] -= 1
nums[i] = count + my_min
i += 1