-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtest_base.py
339 lines (271 loc) · 11.1 KB
/
test_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Test base
"""
import os
import copy
import shutil
import numpy as np
import pytest
import tensorflow as tf
from tensorflow.keras import Sequential, Model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
from sklearn.utils.estimator_checks import check_estimator
from sklearn.base import clone
from adapt.base import BaseAdaptEstimator, BaseAdaptDeep
from adapt.metrics import normalized_linear_discrepancy
Xs = np.concatenate((
np.linspace(0, 1, 100).reshape(-1, 1),
np.zeros((100, 1))
), axis=1)
Xt = np.concatenate((
np.linspace(0, 1, 100).reshape(-1, 1),
np.ones((100, 1))
), axis=1)
ys = 0.2 * Xs[:, 0].ravel()
yt = 0.2 * Xt[:, 0].ravel()
def _custom_metric(yt, yp):
return tf.ones_like(yt) * tf.cast(tf.shape(yt)[0], yt.dtype)
class DummyFeatureBased(BaseAdaptEstimator):
def fit_transform(self, Xs, **kwargs):
return Xs
def transform(self, Xs):
return Xs
class DummyInstanceBased(BaseAdaptEstimator):
def fit_weights(self, Xs, **kwargs):
return np.ones(len(Xs))
def predict_weights(self):
return np.ones(100)
class DummyParameterBased(BaseAdaptEstimator):
def fit(self, Xs, ys):
return self.fit_estimator(Xs, ys)
def test_base_adapt_estimator():
base_adapt = BaseAdaptEstimator(Xt=Xt)
for check in check_estimator(base_adapt, generate_only=True):
try:
check[1](base_adapt)
except Exception as e:
if "The Adapt model should implement a transform or predict_weights methods" in str(e):
print(str(e))
else:
raise
def test_base_adapt_score():
model = DummyParameterBased(Xt=Xt, random_state=0)
model.fit(Xs, ys)
model.score(Xt, yt)
model = DummyFeatureBased(Xt=Xt, random_state=0)
model.fit(Xs, ys)
model.score(Xt, yt)
s1 = model.unsupervised_score(Xs, Xt)
s2 = normalized_linear_discrepancy(model.transform(Xs), Xt)
assert s1 == s2
model = DummyInstanceBased(Xt=Xt, random_state=0)
model.fit(Xs, ys)
model.score(Xt, yt)
s1 = model.unsupervised_score(Xs, Xt)
np.random.seed(0)
bs_index = np.random.choice(len(Xs), len(Xs), p=np.ones(len(Xs))/len(Xs))
s2 = normalized_linear_discrepancy(Xs[bs_index], Xt)
assert s1 == s2
# def test_base_adapt_val_sample_size():
# model = DummyFeatureBased(Xt=Xt, random_state=0, val_sample_size=10)
# model.fit(Xs, ys)
# model.score(Xt, yt)
# assert len(model.Xs_) == 10
# assert len(model.Xt_) == 10
# assert np.all(model.Xs_ == Xs[model.src_index_])
def test_base_adapt_keras_estimator():
est = Sequential()
est.add(Input(shape=Xs.shape[1:]))
est.add(Dense(1))
est.compile(loss="mse", optimizer=Adam(0.01))
model = BaseAdaptEstimator(est, Xt=Xt)
model.fit(Xs, ys)
assert model.estimator_.loss == "mse"
assert isinstance(model.estimator_.optimizer, Adam)
assert model.estimator_.optimizer.learning_rate == 0.01
model = BaseAdaptEstimator(est, Xt=Xt, loss="mae",
optimizer=Adam(0.01, beta_1=0.5),
learning_rate=0.1)
model.fit(Xs, ys)
assert model.estimator_.loss == "mae"
assert isinstance(model.estimator_.optimizer, Adam)
assert model.estimator_.optimizer.learning_rate == 0.1
assert model.estimator_.optimizer.beta_1 == 0.5
model = BaseAdaptEstimator(est, Xt=Xt, optimizer="sgd")
model.fit(Xs, ys)
assert not isinstance(model.estimator_.optimizer, Adam)
est = Sequential()
est.add(Input(shape=Xs.shape[1:]))
est.add(Dense(1))
model = BaseAdaptEstimator(est, Xt=Xt, loss="mae",
optimizer=Adam(0.01, beta_1=0.5),
learning_rate=0.1)
model.fit(Xs, ys)
assert model.estimator_.loss == "mae"
assert isinstance(model.estimator_.optimizer, Adam)
assert model.estimator_.optimizer.learning_rate == 0.1
assert model.estimator_.optimizer.beta_1 == 0.5
s1 = model.score(Xt[:10], yt[:10])
s2 = model.estimator_.evaluate(Xt[:10], yt[:10])
assert s1 == s2
copy_model = copy.deepcopy(model)
assert s1 == copy_model.score(Xt[:10], yt[:10])
assert hex(id(model)) != hex(id(copy_model))
def test_base_adapt_deep():
model = BaseAdaptDeep(Xt=Xt, loss="mse",
epochs=2,
optimizer=Adam(),
learning_rate=0.1,
random_state=0)
model.fit(Xs, ys)
yp = model.predict(Xt)
score = model.score(Xt, yt)
score_adapt = model.unsupervised_score(Xs, Xt)
X_enc = model.transform(Xs)
ypt = model.predict_task(Xt)
ypd = model.predict_disc(Xt)
model.save_weights("./model.weights.h5")
new_model = BaseAdaptDeep(Xt=Xt, loss="mse",
epochs=0,
optimizer=Adam(),
learning_rate=0.1,
random_state=0)
new_model.fit(Xs, ys)
new_model.load_weights("./model.weights.h5")
os.remove("./model.weights.h5")
yp3 = new_model.predict(Xt)
assert isinstance(model.optimizer, Adam)
assert np.abs(model.optimizer.learning_rate.numpy() - 0.1) < 1e-6
assert hasattr(model, "encoder_")
assert hasattr(model, "task_")
assert hasattr(model, "discriminator_")
assert np.mean(np.abs(yp - yp3)) < 1e-6
def test_base_adapt_deep_clone():
model = BaseAdaptDeep(Xt=Xt, loss="mse",
epochs=2,
optimizer=Adam(),
learning_rate=0.1,
random_state=0)
model.fit(Xs, ys)
yp = model.predict(Xt)
score = model.score(Xt, yt)
score_adapt = model.unsupervised_score(Xs, Xt)
X_enc = model.transform(Xs)
ypt = model.predict_task(Xt)
ypd = model.predict_disc(Xt)
new_model = clone(model)
new_model.fit(Xs, ys)
yp2 = new_model.predict(Xt)
score2 = new_model.score(Xt, yt)
score_adapt2 = new_model.unsupervised_score(Xs, Xt)
X_enc2 = new_model.transform(Xs)
ypt2 = new_model.predict_task(Xt)
ypd2 = new_model.predict_disc(Xt)
assert np.all(yp == yp2)
assert score == score2
assert score_adapt == score_adapt2
assert np.all(ypt == ypt2)
assert np.all(ypd == ypd2)
assert np.all(X_enc == X_enc2)
def test_base_deep_validation_data():
model = BaseAdaptDeep(Xt=Xt)
model.fit(Xs, ys, validation_data=(Xt, yt))
model.fit(Xs, ys, validation_split=0.1)
model = BaseAdaptDeep(Xt=Xt, yt=yt)
model.fit(Xs, ys, validation_data=(Xt, yt))
model.fit(Xs, ys, validation_split=0.1)
def test_base_deep_dataset():
model = BaseAdaptDeep()
model.fit(Xs, ys, Xt=Xt, validation_data=(Xs, ys))
model.predict(Xs)
model.evaluate(Xs, ys)
dataset = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(Xs),
tf.data.Dataset.from_tensor_slices(ys.reshape(-1,1))
))
model = BaseAdaptDeep()
model.fit(dataset, Xt=dataset, validation_data=dataset.batch(10))
model.predict(tf.data.Dataset.from_tensor_slices(Xs).batch(32))
model.evaluate(dataset.batch(32))
def gens():
for i in range(40):
yield Xs[i], ys[i]
dataset = tf.data.Dataset.from_generator(gens,
output_shapes=([2], []),
output_types=("float32", "float32"))
model = BaseAdaptDeep()
model.fit(dataset, Xt=Xt, validation_data=dataset.batch(10))
model.predict(tf.data.Dataset.from_tensor_slices(Xs).batch(32))
model.evaluate(dataset.batch(32))
def _unpack_data_ms(self, data):
data_src = data[0]
data_tgt = data[1]
Xs = data_src[0][0]
ys = data_src[1][0]
if isinstance(data_tgt, tuple):
Xt = data_tgt[0]
yt = data_tgt[1]
return Xs, Xt, ys, yt
else:
Xt = data_tgt
return Xs, Xt, ys, None
def test_multisource():
np.random.seed(0)
model = BaseAdaptDeep()
model._unpack_data = _unpack_data_ms.__get__(model)
model.fit(Xs, ys, Xt=Xt, domains=np.random.choice(2, len(Xs)))
model.predict(Xs)
model.evaluate(Xs, ys)
assert model.n_sources_ == 2
def test_complete_batch():
model = BaseAdaptDeep(Xt=Xt[:3], metrics=[_custom_metric])
model.fit(Xs, ys, batch_size=120)
assert model.history_["cm"][0] == 120
model = BaseAdaptDeep(Xt=Xt[:10], yt=yt[:10], metrics=[_custom_metric])
model.fit(Xs[:23], ys[:23], batch_size=17, buffer_size=1024)
assert model.history_["cm"][0] == 17
assert model.total_steps_ == 2
dataset = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(Xs),
tf.data.Dataset.from_tensor_slices(ys.reshape(-1,1))
))
Xtt = tf.data.Dataset.from_tensor_slices(Xt)
model = BaseAdaptDeep(Xt=Xtt, metrics=[_custom_metric])
model.fit(dataset, batch_size=32, validation_data=dataset)
assert model.history_["cm"][0] == 32
model = BaseAdaptDeep(Xt=Xtt, metrics=[_custom_metric])
model.fit(dataset, batch_size=48, validation_data=dataset.batch(32))
assert model.history_["cm"][0] == 48
def gens():
for i in range(40):
yield Xs[i], ys[i]
dataset = tf.data.Dataset.from_generator(gens,
output_shapes=([2], []),
output_types=("float32", "float32"))
def gent():
for i in range(50):
yield Xs[i], ys[i]
dataset2 = tf.data.Dataset.from_generator(gent,
output_shapes=([2], []),
output_types=("float32", "float32"))
model = BaseAdaptDeep(metrics=[_custom_metric])
model.fit(dataset, Xt=dataset2, validation_data=dataset, batch_size=22)
assert model.total_steps_ == 3
assert model.length_src_ == 40
assert model.length_tgt_ == 50
assert model.history_["cm"][0] == 22
model.fit(dataset, Xt=dataset2, validation_data=dataset, batch_size=32)
assert model.total_steps_ == 2
assert model.history_["cm"][-1] == 32
def test_batch_error():
dataset = tf.data.Dataset.zip((tf.data.Dataset.from_tensor_slices(Xs),
tf.data.Dataset.from_tensor_slices(ys.reshape(-1,1))
))
Xtt = tf.data.Dataset.from_tensor_slices(Xt)
model = BaseAdaptDeep(Xt=Xtt, metrics=[_custom_metric])
with pytest.raises(ValueError) as excinfo:
model.fit(dataset.batch(32), batch_size=48, validation_data=dataset.batch(32))
assert "X is already divided" in str(excinfo.value)
model = BaseAdaptDeep(Xt=Xtt.batch(32), metrics=[_custom_metric])
with pytest.raises(ValueError) as excinfo:
model.fit(dataset, batch_size=48, validation_data=dataset.batch(32))
assert "Xt is already divided" in str(excinfo.value)