-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtest_ccsa.py
32 lines (24 loc) · 1.21 KB
/
test_ccsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
import tensorflow as tf
from adapt.utils import make_classification_da
from adapt.feature_based import CCSA
from tensorflow.keras.initializers import GlorotUniform
from tensorflow.keras.optimizers import Adam
np.random.seed(0)
tf.random.set_seed(0)
task = tf.keras.Sequential()
task.add(tf.keras.layers.Dense(50, activation="relu", kernel_initializer=GlorotUniform(seed=0)))
task.add(tf.keras.layers.Dense(2, activation="softmax", kernel_initializer=GlorotUniform(seed=0)))
ind = np.random.choice(100, 10)
Xs, ys, Xt, yt = make_classification_da()
def test_ccsa():
ccsa = CCSA(task=task, loss="categorical_crossentropy",
optimizer=Adam(), metrics=["acc"], gamma=0.1, random_state=0)
ccsa.fit(Xs, tf.one_hot(ys, 2).numpy(), Xt=Xt[ind],
yt=tf.one_hot(yt, 2).numpy()[ind], epochs=100, verbose=0)
assert np.mean(ccsa.predict(Xt).argmax(1) == yt) > 0.8
ccsa = CCSA(task=task, loss="categorical_crossentropy",
optimizer=Adam(), metrics=["acc"], gamma=1., random_state=0)
ccsa.fit(Xs, tf.one_hot(ys, 2).numpy(), Xt=Xt[ind],
yt=tf.one_hot(yt, 2).numpy()[ind], epochs=100, verbose=0)
assert np.mean(ccsa.predict(Xt).argmax(1) == yt) < 0.9