-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtest_dann.py
127 lines (108 loc) · 4.33 KB
/
test_dann.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
Test functions for dann module.
"""
import pytest
import numpy as np
import tensorflow as tf
from tensorflow.keras import Sequential, Model
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam, SGD
from adapt.feature_based import DANN
from adapt.utils import UpdateLambda
from tensorflow.keras.initializers import GlorotUniform
Xs = np.concatenate((
np.linspace(0, 1, 100).reshape(-1, 1),
np.zeros((100, 1))
), axis=1)
Xt = np.concatenate((
np.linspace(0, 1, 100).reshape(-1, 1),
np.ones((100, 1))
), axis=1)
ys = 0.2 * Xs[:, 0].reshape(-1, 1)
yt = 0.2 * Xt[:, 0].reshape(-1, 1)
def _get_encoder(input_shape=Xs.shape[1:]):
model = Sequential()
model.add(Input(shape=input_shape))
model.add(Dense(1,
kernel_initializer="ones",
use_bias=False))
model.compile(loss="mse", optimizer="adam")
return model
def _get_discriminator(input_shape=(1,)):
model = Sequential()
model.add(Input(shape=input_shape))
model.add(Dense(10,
kernel_initializer=GlorotUniform(seed=0),
activation="elu"))
model.add(Dense(1,
kernel_initializer=GlorotUniform(seed=0),
activation="sigmoid"))
model.compile(loss="mse", optimizer="adam")
return model
def _get_task(input_shape=(1,), output_shape=(1,)):
model = Sequential()
model.add(Input(shape=input_shape))
model.add(Dense(np.prod(output_shape),
kernel_initializer=GlorotUniform(seed=0),
use_bias=False))
model.compile(loss="mse", optimizer=Adam(0.1))
return model
def test_fit_lambda_zero():
tf.random.set_seed(0)
np.random.seed(0)
model = DANN(_get_encoder(), _get_task(), _get_discriminator(),
lambda_=0., loss="mse", optimizer=Adam(0.01), metrics=["mae"],
random_state=0)
model.fit(Xs, ys, Xt=Xt, yt=yt,
epochs=400, batch_size=32, verbose=0)
assert isinstance(model, Model)
assert model.encoder_.get_weights()[0][1][0] == 1.0
assert np.sum(np.abs(model.predict(Xs) - ys)) < 0.01
assert np.sum(np.abs(model.predict(Xt) - yt)) > 10
def test_fit_lambda_one():
tf.random.set_seed(0)
np.random.seed(0)
model = DANN(_get_encoder(), _get_task(), _get_discriminator(),
lambda_=1., loss="mse", optimizer=Adam(0.01), random_state=0)
model.fit(Xs, ys, Xt, yt,
epochs=200, batch_size=32, verbose=0)
assert isinstance(model, Model)
assert np.abs(model.encoder_.get_weights()[0][1][0] /
model.encoder_.get_weights()[0][0][0]) < 0.15
assert np.sum(np.abs(model.predict(Xs) - ys)) < 1
assert np.sum(np.abs(model.predict(Xt) - yt)) < 2
def test_fit_lambda_update():
tf.random.set_seed(0)
np.random.seed(0)
model = DANN(_get_encoder(), _get_task(), _get_discriminator(),
lambda_=tf.Variable(0.), loss="mse", optimizer=Adam(0.01), random_state=0)
model.fit(Xs, ys, Xt=Xt, yt=yt,
epochs=100, batch_size=32, verbose=0,
callbacks=UpdateLambda(max_steps=400, gamma=10.))
assert isinstance(model, Model)
assert np.abs(model.encoder_.get_weights()[0][1][0] /
model.encoder_.get_weights()[0][0][0]) < 0.2
assert np.sum(np.abs(model.predict(Xs) - ys)) < 1
assert np.sum(np.abs(model.predict(Xt) - yt)) < 5
assert np.abs(model.lambda_.numpy() - 1.) < 0.01
def test_optimizer_enc_disc():
tf.random.set_seed(0)
np.random.seed(0)
encoder = _get_encoder()
task = _get_task()
disc = _get_discriminator()
X_enc = encoder.predict(Xs)
task.predict(X_enc)
disc.predict(X_enc)
model = DANN(encoder, task, disc, copy=True,
optimizer_enc=Adam(0.0), optimizer_disc=Adam(0.001),
lambda_=tf.Variable(0.), loss="mse", optimizer=Adam(0.01), random_state=0)
model.fit(Xs, ys, Xt=Xt, yt=yt,
epochs=10, batch_size=32, verbose=0)
assert np.all(model.encoder_.get_weights()[0] == encoder.get_weights()[0])
assert np.any(model.task_.get_weights()[0] != task.get_weights()[0])
assert np.any(model.discriminator_.get_weights()[0] != disc.get_weights()[0])
def test_warnings():
with pytest.warns() as record:
model = DANN(gamma=10.)
assert len(record) == 1