-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtest_transfertree.py
271 lines (210 loc) · 11 KB
/
test_transfertree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import copy
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from adapt.utils import make_classification_da
from adapt.parameter_based import TransferTreeClassifier, TransferForestClassifier
from adapt.parameter_based import TransferTreeSelector, TransferForestSelector
methods = [
'relab',
'ser',
'strut',
'ser_nr',
'ser_no_ext',
'ser_nr_lambda',
'strut_nd',
'strut_lambda',
'strut_np',
'strut_lambda_np',
'strut_lambda_np2'
# 'strut_hi'
]
np.random.seed(0)
# Generate training source data
ns = 200
ns_perclass = ns // 2
mean_1 = (1, 1)
var_1 = np.diag([1, 1])
mean_2 = (3, 3)
var_2 = np.diag([2, 2])
Xs = np.r_[np.random.multivariate_normal(mean_1, var_1, size=ns_perclass),
np.random.multivariate_normal(mean_2, var_2, size=ns_perclass)]
ys = np.zeros(ns)
ys[ns_perclass:] = 1
# Generate training target data
nt = 50
# imbalanced
nt_0 = nt // 10
mean_1 = (6, 3)
var_1 = np.diag([4, 1])
mean_2 = (5, 5)
var_2 = np.diag([1, 3])
Xt = np.r_[np.random.multivariate_normal(mean_1, var_1, size=nt_0),
np.random.multivariate_normal(mean_2, var_2, size=nt - nt_0)]
yt = np.zeros(nt)
yt[nt_0:] = 1
# Generate testing target data
nt_test = 1000
nt_test_perclass = nt_test // 2
Xt_test = np.r_[np.random.multivariate_normal(mean_1, var_1, size=nt_test_perclass),
np.random.multivariate_normal(mean_2, var_2, size=nt_test_perclass)]
yt_test = np.zeros(nt_test)
yt_test[nt_test_perclass:] = 1
# Source classifier
RF_SIZE = 10
clf_source_dt = DecisionTreeClassifier(max_depth=None)
clf_source_rf = RandomForestClassifier(n_estimators=RF_SIZE)
clf_source_dt.fit(Xs, ys)
clf_source_rf.fit(Xs, ys)
def test_transfer_tree():
clfs = []
scores = []
for method in methods:
Nkmin = sum(yt == 0 )
root_source_values = clf_source_dt.tree_.value[0].reshape(-1)
props_s = root_source_values
props_s = props_s / sum(props_s)
props_t = np.zeros(props_s.size)
for k in range(props_s.size):
props_t[k] = np.sum(yt == k) / yt.size
coeffs = np.divide(props_t, props_s)
clf_transfer_dt = copy.deepcopy(clf_source_dt)
if method == 'relab':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="")
transferred_dt.fit(Xt,yt)
if method == 'ser':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt.set_params(max_depth=10),algo="ser")
transferred_dt.fit(Xt,yt)
if method == 'ser_nr':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="ser")
transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_red_on_cl=True,cl_no_red=[0])
if method == 'ser_no_ext':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="ser")
transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_ext_on_cl=True,cl_no_ext=[0],ext_cond=True)
if method == 'ser_nr_lambda':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="ser")
transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_red_on_cl=True,cl_no_red=[0],
leaf_loss_quantify=True,leaf_loss_threshold=0.5,
root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs)
if method == 'strut':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt.fit(Xt,yt)
if method == 'strut_nd':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt._strut(Xt, yt,node=0,use_divergence=False)
if method == 'strut_lambda':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt._strut(Xt, yt,node=0,adapt_prop=True,root_source_values=root_source_values,
Nkmin=Nkmin,coeffs=coeffs)
if method == 'strut_np':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt._strut(Xt, yt,node=0,adapt_prop=False,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=False,leaf_loss_threshold=0.5,no_prune_with_translation=False,
root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs)
if method == 'strut_lambda_np':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt._strut(Xt, yt,node=0,adapt_prop=False,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=False,leaf_loss_threshold=0.5,no_prune_with_translation=False,
root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs)
if method == 'strut_lambda_np2':
#decision tree
transferred_dt = TransferTreeClassifier(estimator=clf_transfer_dt,algo="strut")
transferred_dt._strut(Xt, yt,node=0,adapt_prop=False,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=False,leaf_loss_threshold=0.5,no_prune_with_translation=False,
root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs)
score = transferred_dt.estimator.score(Xt_test, yt_test)
print('Testing score transferred model ({}) : {:.3f}'.format(method, score))
clfs.append(transferred_dt.estimator_)
scores.append(score)
def test_transfer_forest():
clfs = []
scores = []
for method in methods:
clf_transfer_rf = copy.deepcopy(clf_source_rf)
if method == 'relab':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="",bootstrap=True)
transferred_rf.fit(Xt,yt)
if method == 'ser':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="ser")
transferred_rf.fit(Xt,yt)
if method == 'ser_nr':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="ser")
transferred_rf._ser_rf(Xt, yt,original_ser=False,no_red_on_cl=True,cl_no_red=[0])
if method == 'ser_no_ext':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="ser")
transferred_rf._ser_rf(Xt, yt,original_ser=False,no_ext_on_cl=True,cl_no_ext=[0],ext_cond=True)
if method == 'ser_nr_lambda':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="ser")
transferred_rf._ser_rf(Xt, yt,original_ser=False,no_red_on_cl=True,cl_no_red=[0],
leaf_loss_quantify=True,leaf_loss_threshold=0.5)
if method == 'strut':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf.fit(Xt,yt)
if method == 'strut_nd':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf._strut_rf(Xt, yt,use_divergence=False)
if method == 'strut_lambda':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf._strut_rf(Xt, yt,adapt_prop=True)
if method == 'strut_np':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf._strut_rf(Xt, yt,adapt_prop=False,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=False,leaf_loss_threshold=0.5,no_prune_with_translation=False)
if method == 'strut_lambda_np':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf._strut_rf(Xt, yt,adapt_prop=True,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=True,leaf_loss_threshold=0.5,no_prune_with_translation=False)
if method == 'strut_lambda_np2':
#random forest
transferred_rf = TransferForestClassifier(estimator=clf_transfer_rf,algo="strut")
transferred_rf._strut_rf(Xt, yt,adapt_prop=True,no_prune_on_cl=True,cl_no_prune=[0],
leaf_loss_quantify=True,leaf_loss_threshold=0.5,no_prune_with_translation=True)
score = transferred_rf.estimator_.score(Xt_test, yt_test)
print('Testing score transferred model ({}) : {:.3f}'.format(method, score))
clfs.append(transferred_rf.estimator_)
scores.append(score)
def test_transfer_forest_selection():
algo_list = ['src','trgt','relab','ser','strut','ser','ser','strut','strut','strut']
algo_name = ['src','trgt','relab','ser','strut','ser_noprune','ser_lambda_noprune','strut_nodiv','strut_lambda','strut_lambda_noprune']
kwargs_ser_noprune = {'original_ser':False,'no_red_on_cl':True,'cl_no_red':[1]}
kwargs_ser_lambda_noprune = {'original_ser':False,'no_red_on_cl':True,'cl_no_red':[1],'leaf_loss_quantify':True,
'leaf_loss_threshold':0.5}
kwargs_strut_nodiv = {'use_divergence':False}
kwargs_strut_lambda = {'adapt_prop':True}
kwargs_strut_lambda_noprune = {'adapt_prop':True,'no_prune_on_cl':True,'cl_no_prune':[1],'leaf_loss_quantify':True,
'leaf_loss_threshold':0.5,'no_prune_with_translation':True}
kwargs_list = [{},{},{},{},{},kwargs_ser_noprune,kwargs_ser_lambda_noprune,kwargs_strut_nodiv,kwargs_strut_lambda,kwargs_strut_lambda_noprune]
TFS = TransferForestSelector(estimator=clf_source_rf,algorithms=algo_list,list_alg_args=kwargs_list)
TFS.model_selection(Xt,yt,score_type="auc")
for k in range(len(algo_list)):
model = TFS.transferred_models[k]
score = model.estimator_.score(Xt_test, yt_test)
print('Testing score transferred model ({}) : {:.3f}'.format(algo_name[k], score))
print('Testing score selective transferred RF :', TFS.STRF_model.score(Xt_test,yt_test) )
def test_specific():
Xs, ys, Xt, yt = make_classification_da()
src_model = DecisionTreeClassifier()
src_model.fit(Xs, ys)
model = TransferTreeClassifier(src_model)
model.estimator_ = src_model
model._strut(Xt[:0], yt[:0], no_prune_on_cl=True, cl_no_prune=[0], node=3)