forked from ahmedfgad/GeneticAlgorithmPython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_allow_duplicate_genes.py
341 lines (285 loc) · 15.3 KB
/
test_allow_duplicate_genes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import pygad
import random
import numpy
num_generations = 1
initial_population = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]
def number_duplicate_genes(gene_space=None,
gene_type=float,
num_genes=10,
mutation_by_replacement=False,
random_mutation_min_val=-1,
random_mutation_max_val=1,
init_range_low=-4,
init_range_high=4,
random_seed=123,
initial_population=None):
def fitness_func(ga, solution, idx):
return random.random()
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=5,
fitness_func=fitness_func,
sol_per_pop=10,
num_genes=num_genes,
gene_space=gene_space,
gene_type=gene_type,
initial_population=initial_population,
init_range_low=init_range_low,
init_range_high=init_range_high,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val,
allow_duplicate_genes=False,
mutation_by_replacement=mutation_by_replacement,
random_seed=random_seed,
save_solutions=True,
suppress_warnings=True)
ga_instance.run()
num_duplicates = 0
for solution in ga_instance.solutions:
num = len(solution) - len(set(solution))
if num != 0:
print(solution)
num_duplicates += num
print("Number of duplicates is {num_duplicates}.".format(num_duplicates=num_duplicates))
return num_duplicates
def test_number_duplicates_default():
num_duplicates = number_duplicate_genes()
assert num_duplicates == 0
def test_number_duplicates_default_initial_population():
num_duplicates = number_duplicate_genes(initial_population=initial_population)
assert num_duplicates == 0
def test_number_duplicates_float_gene_type():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_type=float,
num_genes=num_genes,
init_range_low=0,
init_range_high=1,
random_mutation_min_val=0,
random_mutation_max_val=1)
assert num_duplicates == 0
def test_number_duplicates_float_gene_type_initial_population():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_type=float,
num_genes=num_genes,
init_range_low=0,
init_range_high=1,
initial_population=initial_population,
random_mutation_min_val=0,
random_mutation_max_val=1)
assert num_duplicates == 0
def test_number_duplicates_int_gene_type():
num_genes = 10
init_range_low = 0
init_range_high = init_range_low + num_genes
random_mutation_min_val = 0
random_mutation_max_val = random_mutation_min_val + num_genes
num_duplicates = number_duplicate_genes(gene_type=int,
mutation_by_replacement=False,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val)
assert num_duplicates == 0
def test_number_duplicates_int_gene_type_initial_population():
num_genes = 10
init_range_low = 0
init_range_high = init_range_low + num_genes
random_mutation_min_val = 0
random_mutation_max_val = random_mutation_min_val + num_genes
num_duplicates = number_duplicate_genes(gene_type=int,
mutation_by_replacement=False,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
initial_population=initial_population,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val)
assert num_duplicates == 0
def test_number_duplicates_int_gene_type_replacement():
num_genes = 10
init_range_low = 0
init_range_high = init_range_low + num_genes
random_mutation_min_val = 0
random_mutation_max_val = random_mutation_min_val + num_genes
num_duplicates = number_duplicate_genes(gene_type=int,
mutation_by_replacement=True,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val)
assert num_duplicates == 0
def test_number_duplicates_int_gene_type_replacement_initial_population():
num_genes = 10
init_range_low = 0
init_range_high = init_range_low + num_genes
random_mutation_min_val = 0
random_mutation_max_val = random_mutation_min_val + num_genes
num_duplicates = number_duplicate_genes(gene_type=int,
mutation_by_replacement=True,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
initial_population=initial_population,
random_mutation_min_val=random_mutation_min_val,
random_mutation_max_val=random_mutation_max_val)
assert num_duplicates == 0
def test_number_duplicates_single_gene_space():
num_duplicates = number_duplicate_genes(gene_space=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
num_genes=10)
assert num_duplicates == 0
def test_number_duplicates_single_gene_space_initial_population():
num_duplicates = number_duplicate_genes(gene_space=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
num_genes=10,
initial_population=initial_population)
assert num_duplicates == 0
def test_number_duplicates_single_range_gene_space():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_space=range(num_genes),
num_genes=num_genes)
assert num_duplicates == 0
def test_number_duplicates_single_range_gene_space_initial_population():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_space=range(num_genes),
num_genes=num_genes,
initial_population=initial_population)
assert num_duplicates == 0
def test_number_duplicates_single_numpy_range_gene_space():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_space=numpy.arange(num_genes),
num_genes=num_genes)
assert num_duplicates == 0
def test_number_duplicates_single_numpy_range_gene_space_initial_population():
num_genes = 10
num_duplicates = number_duplicate_genes(gene_space=numpy.arange(num_genes),
num_genes=num_genes,
initial_population=initial_population)
assert num_duplicates == 0
def test_number_duplicates_nested_gene_space():
num_duplicates = number_duplicate_genes(gene_space=[[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10]],
gene_type=int,
num_genes=10)
assert num_duplicates == 0
def test_number_duplicates_nested_gene_space_initial_population():
num_duplicates = number_duplicate_genes(gene_space=[[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10]],
gene_type=int,
num_genes=10,
initial_population=initial_population)
assert num_duplicates == 0
# def test_number_duplicates_nested_gene_space_nested_gene_type():
"""
This example causes duplicate genes that can only be solved by changing the values of a chain of genes.
Let's explain it using this solution: [0, 2, 3, 4, 5, 6, 6, 7, 8, 9]
It has 2 genes with the value 6 at indices 5 and 6.
According to the gene space, none of these genes can has a different value that solves the duplicates.
-If the value of the gene at index 5 is changed from 6 to 5, then it causes another duplicate with the gene at index 4.
-If the value of the gene at index 6 is changed from 6 to 7, then it causes another duplicate with the gene at index 7.
The solution is to change a chain of genes that make a room to solve the duplicates between the 2 genes.
1) Change the second gene from 2 to 1.
2) Change the third gene from 3 to 2.
3) Change the fourth gene from 4 to 3.
4) Change the fifth gene from 5 to 4.
5) Change the sixth gene from 6 to 5. This solves the duplicates.
But this is NOT SUPPORTED yet.
We support changing only a single gene that makes a room to solve the duplicates.
Let's explain it using this solution: [1, 2, 2, 4, 5, 6, 6, 7, 8, 9]
It has 2 genes with the value 2 at indices 1 and 2.
This is how the duplicates are solved:
1) Change the first gene from 1 to 0.
2) Change the second gene from 2 to 1. This solves the duplicates.
The result is [0, 1, 2, 4, 5, 6, 6, 7, 8, 9]
"""
# num_duplicates = number_duplicate_genes(gene_space=[[0, 1],
# [1, 2],
# [2, 3],
# [3, 4],
# [4, 5],
# [5, 6],
# [6, 7],
# [7, 8],
# [8, 9],
# [9, 10]],
# gene_type=[int, int, int, int, int, int, int, int, int, int],
# num_genes=10)
# assert num_duplicates == 0
def test_number_duplicates_nested_gene_space_nested_gene_type_initial_population():
num_duplicates = number_duplicate_genes(gene_space=[[0, 1],
[1, 2],
[2, 3],
[3, 4],
[4, 5],
[5, 6],
[6, 7],
[7, 8],
[8, 9],
[9, 10]],
gene_type=[int, int, int, int, int, int, int, int, int, int],
num_genes=10,
initial_population=initial_population)
assert num_duplicates == 0
if __name__ == "__main__":
print()
test_number_duplicates_default()
print()
test_number_duplicates_default_initial_population()
print()
test_number_duplicates_float_gene_type()
print()
test_number_duplicates_float_gene_type_initial_population()
print()
test_number_duplicates_int_gene_type()
print()
test_number_duplicates_int_gene_type_initial_population()
print()
test_number_duplicates_int_gene_type_replacement()
print()
test_number_duplicates_int_gene_type_replacement_initial_population()
print()
test_number_duplicates_single_gene_space()
print()
test_number_duplicates_single_gene_space_initial_population()
print()
test_number_duplicates_single_range_gene_space()
print()
test_number_duplicates_single_range_gene_space_initial_population()
print()
test_number_duplicates_single_numpy_range_gene_space()
print()
test_number_duplicates_single_numpy_range_gene_space_initial_population()
print()
test_number_duplicates_nested_gene_space()
print()
test_number_duplicates_nested_gene_space_initial_population()
print()
# This example causes duplicates that can only be solved by changing a chain of genes.
# test_number_duplicates_nested_gene_space_nested_gene_type()
# print()
test_number_duplicates_nested_gene_space_nested_gene_type_initial_population()
print()