-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathfid_evaluation.py
156 lines (130 loc) · 4.89 KB
/
fid_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Contains code for logging approximate FID scores during training.
If you want to output ground-truth images from the training dataset, you can
run this file as a script.
"""
import argparse
import copy
import os
import torch
from torchvision.utils import save_image
from tqdm import tqdm
import gmpi.datasets as datasets
import gmpi.utils.pytorch_fid.fid_score as fid_score
# from pytorch_fid import fid_score
def output_real_images(dataloader, num_imgs, real_dir):
img_counter = 0
batch_size = dataloader.batch_size
dataloader = iter(dataloader)
for i in tqdm(range(num_imgs // batch_size)):
real_imgs, _, _, _, _ = next(dataloader)
for img in real_imgs:
save_image(
img,
os.path.join(real_dir, f"{img_counter:0>5}.png"),
normalize=True,
range=(-1, 1),
)
img_counter += 1
def setup_evaluation(dataset_name, generated_dir, target_size=128, num_imgs=8000, debug=False, **kwargs):
if debug:
num_imgs = 256
else:
if dataset_name in ["MetFaces"]:
num_imgs = 2048
# Only make real images if they haven't been made yet
real_dir = os.path.join("EvalImages", f"{dataset_name}_real_images_{str(target_size)}")
print("\nreal_dir: ", real_dir, "\n")
if not os.path.exists(real_dir):
os.makedirs(real_dir)
new_kwargs = copy.deepcopy(kwargs)
new_kwargs["img_size"] = target_size
dataloader, CHANNELS = datasets.get_dataset(dataset_name, **new_kwargs)
print("outputting real images...")
output_real_images(dataloader, num_imgs, real_dir)
print("...done")
if generated_dir is not None:
os.makedirs(generated_dir, exist_ok=True)
return real_dir
def output_images(
generator,
mpi_renderer,
input_metadata,
rank,
world_size,
output_dir,
debug=False,
num_imgs=2048,
xyz_ret_single_res=True,
use_normalized_xyz=True,
truncation_psi=1.0,
):
if debug:
num_imgs = 256
metadata = copy.deepcopy(input_metadata)
metadata["img_size"] = metadata["eval_img_size"]
metadata["batch_size"] = 1
metadata["h_stddev"] = metadata.get("h_stddev_eval", metadata["h_stddev"])
metadata["v_stddev"] = metadata.get("v_stddev_eval", metadata["v_stddev"])
# metadata["sample_dist"] = metadata.get("sample_dist_eval", metadata["sample_dist"])
# metadata["psi"] = 1
img_counter = rank
generator.eval()
img_counter = rank
mpi_tex_pix_xyz, mpi_tex_pix_normalized_xyz = mpi_renderer.get_xyz(
metadata["tex_size"], metadata["tex_size"], ret_single_res=xyz_ret_single_res
)
if use_normalized_xyz:
stylegan2_mpi_xyz_input = mpi_tex_pix_normalized_xyz
else:
stylegan2_mpi_xyz_input = mpi_tex_pix_xyz
if rank == 0:
pbar = tqdm("generating images", total=num_imgs)
with torch.no_grad():
while img_counter < num_imgs:
z = torch.randn(
(metadata["batch_size"], generator.module.z_dim),
device=generator.module.device,
)
generated_imgs = []
batch_mpi_rgbas = generator.module.forward(
z=z,
c=None,
mpi_xyz_coords=stylegan2_mpi_xyz_input,
xyz_coords_only_z=False,
n_planes=stylegan2_mpi_xyz_input[4].shape[0],
truncation_psi=truncation_psi,
)
generated_imgs, _, _, _ = mpi_renderer.render(
batch_mpi_rgbas,
metadata["img_size"],
metadata["img_size"],
horizontal_mean=metadata["h_mean"],
horizontal_std=metadata["h_stddev"],
vertical_mean=metadata["v_mean"],
vertical_std=metadata["v_stddev"],
)
for img in generated_imgs:
save_image(
img,
os.path.join(output_dir, f"{img_counter:0>5}.png"),
normalize=True,
range=(-1, 1),
)
img_counter += world_size
if rank == 0:
pbar.update(world_size)
if rank == 0:
pbar.close()
def calculate_fid(dataset_name, generated_dir, target_size=256):
real_dir = os.path.join("EvalImages", f"{dataset_name}_real_images_{str(target_size)}")
fid = fid_score.calculate_fid_given_paths([real_dir, generated_dir], 128, "cuda", 2048)
torch.cuda.empty_cache()
return fid, real_dir
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="CelebA")
parser.add_argument("--img_size", type=int, default=128)
parser.add_argument("--num_imgs", type=int, default=8000)
opt = parser.parse_args()
real_images_dir = setup_evaluation(opt.dataset, None, target_size=opt.img_size, num_imgs=opt.num_imgs)