-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_helpers.py
237 lines (188 loc) · 8.47 KB
/
train_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2022 Apple Inc. All Rights Reserved.
#
import datetime
import os
import torch
import torch.distributed as dist
import gmpi.curriculums as curriculums
# https://github.com/NVlabs/stylegan2-ada-pytorch/blob/6f160b3d22b8b178ebe533a50d4d5e63aedba21d/train.py#L154
# We change mbstd according to 1
STYLEGAN2_CFG_SPECS = {
"auto": dict(
ref_gpus=-1, kimg=25000, mb=-1, mbstd=1, fmaps=-1, lrate=-1, gamma=-1, ema=-1, ramp=0.05, map=2
), # Populated dynamically based on resolution and GPU count.
"stylegan2": dict(
ref_gpus=8, kimg=25000, mb=32, mbstd=1, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8
), # Uses mixed-precision, unlike the original StyleGAN2.
"256": dict(ref_gpus=8, kimg=25000, mb=64, mbstd=1, fmaps=0.5, lrate=0.0025, gamma=1, ema=20, ramp=None, map=8),
"512": dict(ref_gpus=8, kimg=25000, mb=64, mbstd=1, fmaps=1, lrate=0.0025, gamma=0.5, ema=20, ramp=None, map=8),
"1024": dict(ref_gpus=8, kimg=25000, mb=32, mbstd=1, fmaps=1, lrate=0.002, gamma=2, ema=10, ramp=None, map=8),
"cifar": dict(
ref_gpus=2, kimg=100000, mb=64, mbstd=1, fmaps=1, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=2
),
}
def modify_curriculums(config, run_dataset=None, flag_eval=False):
if run_dataset is not None:
config.defrost()
config.GMPI.TRAIN.dataset = run_dataset
config.freeze()
assert config.GMPI.TRAIN.dataset in [
"FFHQ256",
"FFHQ512",
"FFHQ1024",
"AFHQCat",
"MetFaces",
], f"{config.GMPI.TRAIN.dataset}"
config.defrost()
if "FFHQ" in config.GMPI.TRAIN.dataset:
res = int(config.GMPI.TRAIN.dataset[4:])
curriculum_name = "FFHQ"
config.GMPI.MPI.CAM_SETUP = config.GMPI.MPI.FOR_FFHQ
elif "AFHQCat" in config.GMPI.TRAIN.dataset:
res = 512
curriculum_name = "AFHQCat"
config.GMPI.MPI.CAM_SETUP = config.GMPI.MPI.FOR_AFHQCat
elif "MetFaces" in config.GMPI.TRAIN.dataset:
res = 1024
curriculum_name = "MetFaces"
config.GMPI.MPI.CAM_SETUP = config.GMPI.MPI.FOR_MetFaces
else:
raise ValueError
config.GMPI.TRAIN.curriculum = curriculum_name
config.GMPI.MODEL.STYLEGAN2.max_out_dim = res
config.GMPI.MODEL.STYLEGAN2.max_out_dim_D = res
config.GMPI.MODEL.pretrained = config.GMPI.MODEL.pretrained_ckpts[config.GMPI.TRAIN.dataset]
config.GMPI.MODEL.pretrained_D = config.GMPI.MODEL.pretrained
config.GMPI.MODEL.STYLEGAN2.discriminator.mbstd_group_size = STYLEGAN2_CFG_SPECS[
str(config.GMPI.MODEL.STYLEGAN2.max_out_dim_D)
]["mbstd"]
config.freeze()
# Set dataset path right
cur_curriculum = getattr(curriculums, curriculum_name)
if config.GMPI.MODEL.STYLEGAN2.torgba_cond_on_pos_enc_embed_func == "learnable_param":
cur_curriculum[0].update(cur_curriculum["res_dict_learnable_param"][config.GMPI.MODEL.STYLEGAN2.max_out_dim_D])
elif config.GMPI.MODEL.STYLEGAN2.torgba_cond_on_pos_enc_embed_func in ["modulated_lrelu", "conv_lrelu", "none"]:
cur_curriculum[0].update(cur_curriculum["res_dict"][config.GMPI.MODEL.STYLEGAN2.max_out_dim_D])
else:
raise ValueError(config.GMPI.MODEL.STYLEGAN2.torgba_cond_on_pos_enc_embed_func)
cur_curriculum["raw_img_size"] = config.GMPI.MODEL.STYLEGAN2.max_out_dim_D
cur_curriculum["eval_img_size"] = config.GMPI.MODEL.STYLEGAN2.max_out_dim_D
if curriculum_name == "FFHQ":
cur_curriculum["dataset"] = "FFHQ"
cur_curriculum["dataset_path"] = config.DATASET.FFHQ.TRAIN_DATAROOT.format(
cur_curriculum["raw_img_size"], cur_curriculum["raw_img_size"]
)
cur_curriculum["pose_data_path"] = config.DATASET.FFHQ.POSE_DATAROOT.format(cur_curriculum["raw_img_size"])
elif curriculum_name == "AFHQCat":
cur_curriculum["dataset"] = "AFHQCat"
cur_curriculum["dataset_path"] = config.DATASET.AFHQCat.TRAIN_DATAROOT
cur_curriculum["pose_data_path"] = config.DATASET.AFHQCat.POSE_DATAROOT
elif curriculum_name == "MetFaces":
cur_curriculum["dataset"] = "MetFaces"
cur_curriculum["dataset_path"] = config.DATASET.MetFaces.TRAIN_DATAROOT
cur_curriculum["pose_data_path"] = config.DATASET.MetFaces.POSE_DATAROOT
else:
raise ValueError
setattr(curriculums, curriculum_name, cur_curriculum)
def setup(rank, world_size, port):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = port
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size, timeout=datetime.timedelta(seconds=7200))
def cleanup():
dist.destroy_process_group()
def z_sampler(shape, device, dist):
if dist == "gaussian":
z = torch.randn(shape, device=device)
elif dist == "uniform":
z = torch.rand(shape, device=device) * 2 - 1
return z
def find_worst_view_per_z(
*,
z,
generator_ddp,
discriminator_ddp,
mpi_renderer,
config,
metadata,
stylegan2_mpi_xyz_input,
enable_mapping_grad,
enable_syn_feat_net_grad,
cur_h_stddev,
cur_v_stddev,
alpha,
xyz_coords_only_z,
n_planes,
truncation_psi,
):
chosen_cam_pos = []
bs = z.shape[0]
if metadata["tex_size"] == 1024:
mb = 1
elif metadata["tex_size"] == 512:
mb = 2
else:
mb = 4
for start_batch_idx in range(0, bs, mb):
end_batch_idx = min(bs, start_batch_idx + mb)
subset_z = z[start_batch_idx:end_batch_idx]
split_batch_size = end_batch_idx - start_batch_idx
raw_batch_mpi_rgbas = generator_ddp(
z=subset_z,
c=None,
mpi_xyz_coords=stylegan2_mpi_xyz_input,
xyz_coords_only_z=xyz_coords_only_z,
n_planes=n_planes,
enable_mapping_grad=enable_mapping_grad,
enable_syn_feat_net_grad=enable_syn_feat_net_grad,
truncation_psi=truncation_psi,
)
# [B, #planes, 4, H, W]
tmp_bs, tmp_n_planes, _, tmp_h, tmp_w = raw_batch_mpi_rgbas.shape
batch_mpi_rgbas = raw_batch_mpi_rgbas.unsqueeze(1).expand(
-1, config.GMPI.TRAIN.n_view_per_z_in_train, -1, -1, -1, -1
)
batch_mpi_rgbas = batch_mpi_rgbas.reshape(
(tmp_bs * config.GMPI.TRAIN.n_view_per_z_in_train, tmp_n_planes, 4, tmp_h, tmp_w)
)
gen_imgs, _, gen_c2w_mats, gen_positions = mpi_renderer.render(
batch_mpi_rgbas,
metadata["img_size"],
metadata["img_size"],
horizontal_std=cur_h_stddev,
vertical_std=cur_v_stddev,
)
if config.GMPI.TRAIN.D_cond_pose_dim == 9:
gen_w2c_mats = torch.inverse(gen_c2w_mats[:, :3, :3])
elif config.GMPI.TRAIN.D_cond_pose_dim == 16:
gen_w2c_mats = torch.inverse(gen_c2w_mats)
else:
raise ValueError
flat_gen_w2c_mats = gen_w2c_mats.reshape((split_batch_size * config.GMPI.TRAIN.n_view_per_z_in_train, -1))
if config.GMPI.TRAIN.D_cond_on_pose:
g_preds, g_pred_latent, g_pred_position = discriminator_ddp(gen_imgs, alpha, flat_gen_w2c_mats, **metadata)
else:
g_preds, g_pred_latent, g_pred_position = discriminator_ddp(gen_imgs, alpha, None, **metadata)
assert (config.GMPI.TRAIN.n_view_per_z_in_train > 1) and (config.GMPI.TRAIN.G_select_worse_view)
# NOTE: we need to choose the worst-scored view
# g_pred: [B x #views_per_z, 1]
# softplus: https://github.com/pfnet-research/sngan_projection/issues/18#issuecomment-392683263
# [mb, #view_per_z, 1]
tmp_g_preds = -1 * g_preds.reshape((-1, config.GMPI.TRAIN.n_view_per_z_in_train, 1))
# tmp_hard_examples = -1 * torch.topk(tmp_g_preds, 1, dim=1).values
# g_preds = tmp_hard_examples.reshape((-1, 1))
# [mb, 1, 1]
tmp_hard_idxs = torch.topk(tmp_g_preds, 1, dim=1, largest=True, sorted=True).indices
# [mb, 1, 2]
tmp_hard_idxs = tmp_hard_idxs.expand(-1, -1, 2)
# [mb, #view_per_z, 2]
tmp_gen_positions = gen_positions.reshape((-1, config.GMPI.TRAIN.n_view_per_z_in_train, 2))
# [mb, 1, 2] -> [mb, 2]
tmp_chosen_cam_pos = torch.gather(tmp_gen_positions, dim=1, index=tmp_hard_idxs)[:, 0, :]
chosen_cam_pos.append(tmp_chosen_cam_pos)
chosen_cam_pos = torch.cat(chosen_cam_pos, dim=0)
chosen_cam_pitches = chosen_cam_pos[:, :1]
chosen_cam_yaws = chosen_cam_pos[:, 1:]
return chosen_cam_yaws, chosen_cam_pitches, z