-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathprob-tests.js
165 lines (129 loc) · 4.64 KB
/
prob-tests.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
var SEED = 0;
var TRIALS = 1000000;
var MEAN_ERR = 10000/TRIALS;
var VAR_ERR = 100000/TRIALS;
function nearlyEqual(assert, actual, expected, err, msg) {
msg += " " + actual.toFixed(3) + " ~= " + expected.toFixed(3) + " +/- " + err;
assert.ok( ((expected - err) < actual) && (actual < (expected + err)), msg );
}
function checkMinMax(assert, f, min, max) {
assert.equal(f.Min, min, "Correct min");
assert.equal(f.Max, max, "Correct max");
}
function checkEstimators(assert, f, mean, variance) {
assert.equal(f.Mean, mean, "Correct mean");
assert.equal(f.Variance, variance, "Correct variance");
}
function checkResults(assert, f, trials) {
trials = trials || TRIALS;
var mt = Random.engines.mt19937().seed(SEED);
var sum = 0, sum2 = 0;
for (var i = 0; i < trials; i++) {
var value = f(mt);
sum += value;
sum2 += value * value;
if( value < f.Min || value >= f.Max) {
assert.ok(false, "Value outside of range: " + value + " != [" + f.Min + "," + f.Max + ")");
}
}
var mean = sum / trials;
var variance = (sum2 - (sum*sum) / trials) / trials;
if (f.Mean !== null) {
nearlyEqual(assert, mean, f.Mean, MEAN_ERR, "Generated mean within range");
}
if (f.Variance !== null) {
nearlyEqual(assert, variance, f.Variance, VAR_ERR, "Generated variance within range");
}
}
QUnit.module("Distributions");
QUnit.test( "uniform", function(assert) {
var f = Prob.uniform(1, 3);
checkMinMax(assert, f, 1, 3);
checkEstimators(assert, f, 2, 1/3);
checkResults(assert, f);
});
QUnit.test( "normal", function(assert) {
var f = Prob.normal(2, 3);
checkMinMax(assert, f, Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY);
checkEstimators(assert, f, 2, 9);
checkResults(assert, f);
});
QUnit.test( "exponential", function(assert) {
var f = Prob.exponential(3/2);
checkMinMax(assert, f, 0, Number.POSITIVE_INFINITY);
checkEstimators(assert, f, 2/3, 4/9);
checkResults(assert, f);
});
QUnit.test( "lognormal", function(assert) {
var f = Prob.lognormal(0, 0.5);
mean = Math.exp( 0.125 );
variance = (Math.exp(0.25) - 1) * Math.exp(0.25);
checkMinMax(assert, f, 0, Number.POSITIVE_INFINITY);
checkEstimators(assert, f, mean, variance);
checkResults(assert, f);
});
QUnit.test( "poisson", function(assert) {
var f = Prob.poisson(2);
checkMinMax(assert, f, 0, Number.POSITIVE_INFINITY);
checkEstimators(assert, f, 2, 2);
checkResults(assert, f);
});
QUnit.test( "zipf", function(assert) {
var f = Prob.zipf(1, 10);
checkMinMax(assert, f, 1, 11);
//checkEstimators(assert, f, mean, variance);
checkResults(assert, f);
});
QUnit.module("API");
function checkFunction(assert, name, func) {
var f = func();
assert.ok(typeof f === 'function', name + " returns a default generator function");
assert.ok(typeof f() === 'number', name + " generated a random number");
}
QUnit.test( "defaults", function(assert) {
// Tests we can create each distribution with default args, and can generate atleast one number.
checkFunction(assert, 'uniform', Prob.uniform);
checkFunction(assert, 'normal', Prob.normal);
checkFunction(assert, 'exponential', Prob.exponential);
checkFunction(assert, 'lognormal', Prob.lognormal);
checkFunction(assert, 'poisson', Prob.poisson);
checkFunction(assert, 'zipf', Prob.zipf);
});
// TODO Check zipf binary search works as expected, search for 0, 1.0, etc
QUnit.test( "zipf args", function(assert) {
assert.throws(function() {
Prob.zipf(1, 0);
}, "throws with illegal 'N' argument");
assert.throws(function() {
Prob.zipf(1, -1);
}, "throws with illegal 'N' argument");
});
QUnit.test( "source", function(assert) {
var xkcd_source = function() {
return 4; // chosen by fair dice roll.
// guranteed to be random.
};
var r = Prob.uniform();
var x = r(xkcd_source);
var y = r(xkcd_source);
var z = r(xkcd_source);
assert.ok(typeof x === "number", "XKCD random source supplys a number");
assert.ok(x === y && y == z, "XKCD random source works");
x = r(Random.engines.nativeMath);
assert.ok(typeof x === "number", "Other random js source supplys a number");
});