-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
64 lines (49 loc) · 1.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# coding: utf-8
import torch
def create_pos_data(
inputs: torch.Tensor,
labels: torch.Tensor,
num_classes: int = 10,
) -> torch.Tensor:
return labeled_image(inputs, labels)
def create_neg_data(
inputs: torch.Tensor,
labels: torch.Tensor,
num_classes: int = 10,
) -> torch.Tensor:
fake_labels = torch.randint(1, 10, (labels.shape[0],))
fake_labels = (labels + fake_labels) % num_classes
return labeled_image(inputs, fake_labels)
def create_test_data(
inputs: torch.Tensor,
num_classes: int = 10,
) -> torch.Tensor:
test_data = torch.stack([labeled_image(inputs, idx) for idx in torch.tensor(range(num_classes))])
return test_data.view(num_classes, -1)
def labeled_image(
inputs: torch.Tensor,
labels: torch.Tensor,
num_classes: int = 10,
) -> torch.Tensor:
# Convert into one-hot format
one_hot_labels = torch.nn.functional.one_hot(labels, num_classes=num_classes)
# Replace
# one_hot_labels = (batch_size, 10)
# images = (batch_size, 28 * 28)
images = inputs.clone()
images[:, :10] = one_hot_labels
return images
class AverageMeter:
"""Computes and stores the average and current values of losses"""
def __init__(self) -> None:
self.reset()
def reset(self) -> None:
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val: float, count_num: int = 1) -> None:
self.val = val
self.sum += val * count_num
self.count += count_num
self.avg = self.sum / self.count