forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin_path_sum.cpp
127 lines (83 loc) · 2.79 KB
/
min_path_sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Given a m x n grid filled with non-negative numbers,
find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
// Recursive (TLE)
class Solution {
public:
int solve(int i, int j, vector<vector<int>> &grid) {
if (i == grid.size() - 1 && j == grid[0].size() - 1) return grid[i][j];
if (i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size()) return INT_MAX;
int down = solve(i + 1, j, grid);
int right = solve(i, j + 1, grid);
return min(down, right) + grid[i][j];
}
int minPathSum(vector<vector<int>>& grid) {
if (grid.size() == 0) return 0;
return solve(0, 0, grid);
}
};
//Recursive Memoized (Accepted)
class Solution {
public:
vector <vector<int>> dp;
int solve(int i, int j, vector<vector<int>> &grid) {
if (i == grid.size() - 1 && j == grid[0].size() - 1) return grid[i][j];
if (i < 0 || i >= grid.size() || j < 0 || j >= grid[0].size()) return INT_MAX;
if (dp[i][j] != -1) return dp[i][j];
int down = solve(i + 1, j, grid);
int right = solve(i, j + 1, grid);
return dp[i][j] = min(down, right) + grid[i][j];
}
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
if (m == 0) return 0;
int n = grid[0].size();
dp.resize(m, vector<int> (n, -1));
return solve(0, 0, grid);
}
};
// O(n2)
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m=grid.size();
if(m==0) return 0;
int n=grid[0].size();
int dp[m][n];
dp[0][0]=grid[0][0];
for(int i=1;i<m;i++) dp[i][0]=dp[i-1][0]+grid[i][0];
for(int j=1;j<n;j++) dp[0][j]=dp[0][j-1]+grid[0][j];
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=min(dp[i-1][j], dp[i][j-1])+grid[i][j];
}
}
return dp[m-1][n-1];
}
};
// using same grid array to store results
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size();
if (m == 0) return 0;
int n = grid[0].size();
for (int i = 1; i < m; i++) grid[i][0] += grid[i - 1][0];
for (int j = 1; j < n; j++) grid[0][j] += grid[0][j - 1];
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
grid[i][j] += min(grid[i][j - 1], grid[i - 1][j]);
}
}
return grid[m - 1][n - 1];
}
};