forked from sureshmangs/Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunbounded_01_knapsack.cpp
75 lines (56 loc) · 1.66 KB
/
unbounded_01_knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
Given weights and values related to n items and the maximum capacity allowed for these items. What is the maximum value we can achieve if we can pick any weights any number of times for a total allowed weight of W?
Input:
The first line of input contains an integer denoting the number of test cases. Then T test cases follow . Each test case contains two integers N and W denoting the number of items and the total allowed weight. In the next two lines are space separated values of the array denoting values of the items (val[]) and their weights (wt[]) respectively.
Output:
For each test case, in a new line, print the maximum value which we can achieve if we can pick any weights any number of times for a bag of size W.
Constraints:
1 <= T <= 100
1 <= N, W <= 103
1 <= wt[], val[] <= 100
Example:
Input:
2
2 3
1 1
2 1
4 8
1 4 5 7
1 3 4 5
Output:
3
11
*/
#include<bits/stdc++.h>
using namespace std;
int unboundedKnapSack(int wt[], int val[], int n, int w){
int dp[n+1][w+1];
for(int i=0;i<n+1;i++) dp[i][0]=0;
for(int j=0;j<w+1;j++) dp[0][j]=0;
for(int i=1;i<n+1;i++){
for(int j=1;j<w+1;j++){
if(wt[i-1]<=j){
dp[i][j]=max(val[i-1]+dp[i][j-wt[i-1]], dp[i-1][j]);
} else {
dp[i][j]=dp[i-1][j];
}
}
}
return dp[n][w];
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int t;
cin>>t;
while(t--){
int n,w;
cin>>n>>w;
int wt[n], val[n];
for(int i=0;i<n;i++) cin>>val[i];
for(int i=0;i<n;i++) cin>>wt[i];
cout<<unboundedKnapSack(wt,val,n,w)<<endl;
}
return 0;
}