|
| 1 | +import tensorflow as tf |
| 2 | +from tensorflow.keras.models import Model |
| 3 | +from tensorflow.keras.losses import MSE |
| 4 | +from tensorflow.keras.optimizers import Adam |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +class Vgg16(tf.keras.Model): |
| 8 | + def __init__(self,output_nodes): |
| 9 | + super(Vgg16, self).__init__() |
| 10 | + # layers needed |
| 11 | + self.conv1_1 = tf.keras.layers.Conv2D( |
| 12 | + input_shape=[None,28,28,1],filters=64, kernel_size=3, |
| 13 | + padding="same", activation="relu") |
| 14 | + self.conv1_2 = tf.keras.layers.Conv2D( |
| 15 | + filters=64, kernel_size=3, |
| 16 | + padding="same", activation="relu") |
| 17 | + self.conv2_1 = tf.keras.layers.Conv2D( |
| 18 | + filters=128, kernel_size=3, |
| 19 | + padding="same", activation="relu") |
| 20 | + self.conv2_2 = tf.keras.layers.Conv2D( |
| 21 | + filters=128, kernel_size=3, |
| 22 | + padding="same", activation="relu") |
| 23 | + self.conv3_1 = tf.keras.layers.Conv2D( |
| 24 | + filters=256,kernel_size=3, |
| 25 | + padding="same", activation="relu") |
| 26 | + self.conv3_2 = tf.keras.layers.Conv2D( |
| 27 | + filters=256,kernel_size=3, |
| 28 | + padding="same", activation="relu") |
| 29 | + self.conv3_3 = tf.keras.layers.Conv2D( |
| 30 | + filters=256,kernel_size=3, |
| 31 | + padding="same", activation="relu") |
| 32 | + |
| 33 | + self.conv4_1 = tf.keras.layers.Conv2D( |
| 34 | + filters=512, kernel_size=3, |
| 35 | + padding="same", activation="relu") |
| 36 | + self.conv4_2 = tf.keras.layers.Conv2D( |
| 37 | + filters=512, kernel_size=3, |
| 38 | + padding="same", activation="relu") |
| 39 | + self.conv4_3 = tf.keras.layers.Conv2D( |
| 40 | + filters=512, kernel_size=3, |
| 41 | + padding="same", activation="relu") |
| 42 | + self.conv5_1 = tf.keras.layers.Conv2D( |
| 43 | + filters=512, kernel_size=3, |
| 44 | + padding="same", activation="relu") |
| 45 | + self.conv5_2 = tf.keras.layers.Conv2D( |
| 46 | + filters=512, kernel_size=3, |
| 47 | + padding="same", activation="relu") |
| 48 | + self.conv5_3 = tf.keras.layers.Conv2D( |
| 49 | + filters=512, kernel_size=3, |
| 50 | + padding="same", activation="relu") |
| 51 | + self.dense1_1 = tf.keras.layers.Dense( |
| 52 | + units=4096, activation="relu") |
| 53 | + self.dense1_2 = tf.keras.layers.Dense( |
| 54 | + units=4096, activation="relu") |
| 55 | + self.dense2 = tf.keras.layers.Dense( |
| 56 | + units=output_nodes, activation="softmax") |
| 57 | + self.maxPool = tf.keras.layers.MaxPool2D( |
| 58 | + pool_size=2, strides=2, padding="same") |
| 59 | + self.flatten = tf.keras.layers.Flatten() |
| 60 | + |
| 61 | + def call(self,input): |
| 62 | + # ops |
| 63 | + x = self.conv1_1(input) |
| 64 | + x = self.conv1_2(x) |
| 65 | + x = self.maxPool(x) |
| 66 | + x = self.conv2_1(x) |
| 67 | + x = self.conv2_2(x) |
| 68 | + x = self.maxPool(x) |
| 69 | + x = self.conv3_1(x) |
| 70 | + x = self.conv3_2(x) |
| 71 | + x = self.conv3_3(x) |
| 72 | + x = self.maxPool(x) |
| 73 | + x = self.conv4_1(x) |
| 74 | + x = self.conv4_2(x) |
| 75 | + x = self.conv4_3(x) |
| 76 | + x = self.maxPool(x) |
| 77 | + x = self.conv5_1(x) |
| 78 | + x = self.conv5_2(x) |
| 79 | + x = self.conv5_3(x) |
| 80 | + x = self.maxPool(x) |
| 81 | + x = self.flatten(x) |
| 82 | + x = self.dense1_1(x) |
| 83 | + x = self.dense1_2(x) |
| 84 | + x = self.dense2(x) |
| 85 | + return x |
| 86 | + |
| 87 | + |
| 88 | +network = Vgg16(10) |
| 89 | +# network.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) |
| 90 | + |
| 91 | +mnist = tf.keras.datasets.mnist |
| 92 | + |
| 93 | +(x_train, y_train),(x_test, y_test) = mnist.load_data() |
| 94 | +x_train = (x_train.reshape(-1, 28, 28, 1) / 255).astype(np.float32) |
| 95 | +# x_train, x_test = x_train / 255.0, x_test / 255.0 |
| 96 | +y_train = np.eye(10)[y_train].astype(np.float32) |
| 97 | +x_train = x_train[:100] |
| 98 | +y_train = y_train[:100] |
| 99 | + |
| 100 | + |
| 101 | + |
| 102 | +input_layer = tf.keras.layers.Input(shape=(28,28,1)) |
| 103 | +output_layer = network(input_layer) |
| 104 | +training_model = Model(inputs=input_layer,outputs=output_layer) |
| 105 | +optim = Adam() |
| 106 | + |
| 107 | +for i in range(100): |
| 108 | + with tf.GradientTape(watch_accessed_variables=False) as tape: |
| 109 | + tape.watch(training_model.trainable_variables) |
| 110 | + preds = training_model(x_train) |
| 111 | + loss = MSE(preds, y_train) |
| 112 | + cost = tf.reduce_mean(loss) |
| 113 | + grads = tape.gradient(loss, training_model.trainable_variables) |
| 114 | + optim.apply_gradients(zip(grads, training_model.trainable_variables)) |
| 115 | + print(cost) |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | + |
0 commit comments