forked from wiseodd/generative-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathac_gan_pytorch.py
152 lines (113 loc) · 3.55 KB
/
ac_gan_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn.functional as nn
import torch.autograd as autograd
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from torch.autograd import Variable
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
mb_size = 32
z_dim = 16
X_dim = mnist.train.images.shape[1]
y_dim = mnist.train.labels.shape[1]
h_dim = 128
cnt = 0
lr = 1e-3
eps = 1e-8
G_ = torch.nn.Sequential(
torch.nn.Linear(z_dim + y_dim, h_dim),
torch.nn.PReLU(),
torch.nn.Linear(h_dim, X_dim),
torch.nn.Sigmoid()
)
def G(z, c):
inputs = torch.cat([z, c], 1)
return G_(inputs)
D_shared = torch.nn.Sequential(
torch.nn.Linear(X_dim, h_dim),
torch.nn.PReLU()
)
D_gan = torch.nn.Sequential(
torch.nn.Linear(h_dim, 1),
torch.nn.Sigmoid()
)
D_aux = torch.nn.Sequential(
torch.nn.Linear(h_dim, y_dim),
)
def D(X):
h = D_shared(X)
return D_gan(h), D_aux(h)
nets = [G_, D_shared, D_gan, D_aux]
G_params = G_.parameters()
D_params = (list(D_shared.parameters()) + list(D_gan.parameters()) +
list(D_aux.parameters()))
def reset_grad():
for net in nets:
net.zero_grad()
G_solver = optim.Adam(G_params, lr=lr)
D_solver = optim.Adam(D_params, lr=lr)
for it in range(100000):
# Sample data
X, y = mnist.train.next_batch(mb_size)
X = Variable(torch.from_numpy(X))
# c is one-hot
c = Variable(torch.from_numpy(y.astype('float32')))
# y_true is not one-hot (requirement from nn.cross_entropy)
y_true = Variable(torch.from_numpy(y.argmax(axis=1).astype('int')))
# z noise
z = Variable(torch.randn(mb_size, z_dim))
""" Discriminator """
G_sample = G(z, c)
D_real, C_real = D(X)
D_fake, C_fake = D(G_sample)
# GAN's D loss
D_loss = torch.mean(torch.log(D_real + eps) + torch.log(1 - D_fake + eps))
# Cross entropy aux loss
C_loss = -nn.cross_entropy(C_real, y_true) - nn.cross_entropy(C_fake, y_true)
# Maximize
DC_loss = -(D_loss + C_loss)
DC_loss.backward()
D_solver.step()
reset_grad()
""" Generator """
G_sample = G(z, c)
D_fake, C_fake = D(G_sample)
_, C_real = D(X)
# GAN's G loss
G_loss = torch.mean(torch.log(D_fake + eps))
# Cross entropy aux loss
C_loss = -nn.cross_entropy(C_real, y_true) - nn.cross_entropy(C_fake, y_true)
# Maximize
GC_loss = -(G_loss + C_loss)
GC_loss.backward()
G_solver.step()
reset_grad()
# Print and plot every now and then
if it % 1000 == 0:
idx = np.random.randint(0, 10)
c = np.zeros([16, y_dim])
c[range(16), idx] = 1
c = Variable(torch.from_numpy(c.astype('float32')))
z = Variable(torch.randn(16, z_dim))
samples = G(z, c).data.numpy()
print('Iter-{}; D_loss: {:.4}; G_loss: {:.4}; Idx: {}'
.format(it, -D_loss.data[0], -G_loss.data[0], idx))
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
if not os.path.exists('out/'):
os.makedirs('out/')
plt.savefig('out/{}.png'
.format(str(cnt).zfill(3)), bbox_inches='tight')
cnt += 1
plt.close(fig)