forked from wiseodd/generative-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathf_gan_pytorch.py
126 lines (99 loc) · 3.27 KB
/
f_gan_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn
import torch.nn.functional as nn
import torch.autograd as autograd
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from torch.autograd import Variable
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
mb_size = 32
z_dim = 10
X_dim = mnist.train.images.shape[1]
y_dim = mnist.train.labels.shape[1]
h_dim = 128
cnt = 0
lr = 1e-3
def log(x):
return torch.log(x + 1e-8)
G = torch.nn.Sequential(
torch.nn.Linear(z_dim, h_dim),
torch.nn.ReLU(),
torch.nn.Linear(h_dim, X_dim),
torch.nn.Sigmoid()
)
D = torch.nn.Sequential(
torch.nn.Linear(X_dim, h_dim),
torch.nn.ReLU(),
torch.nn.Linear(h_dim, 1),
)
def reset_grad():
G.zero_grad()
D.zero_grad()
G_solver = optim.Adam(G.parameters(), lr=lr)
D_solver = optim.Adam(D.parameters(), lr=lr)
for it in range(1000000):
# Sample data
z = Variable(torch.randn(mb_size, z_dim))
X, _ = mnist.train.next_batch(mb_size)
X = Variable(torch.from_numpy(X))
# Dicriminator
G_sample = G(z)
D_real = D(X)
D_fake = D(G_sample)
# Uncomment D_loss and its respective G_loss of your choice
# ---------------------------------------------------------
""" Total Variation """
# D_loss = -(torch.mean(0.5 * torch.tanh(D_real)) -
# torch.mean(0.5 * torch.tanh(D_fake)))
""" Forward KL """
# D_loss = -(torch.mean(D_real) - torch.mean(torch.exp(D_fake - 1)))
""" Reverse KL """
D_loss = -(torch.mean(-torch.exp(D_real)) - torch.mean(-1 - D_fake))
""" Pearson Chi-squared """
# D_loss = -(torch.mean(D_real) - torch.mean(0.25*D_fake**2 + D_fake))
""" Squared Hellinger """
# D_loss = -(torch.mean(1 - torch.exp(D_real)) -
# torch.mean((1 - torch.exp(D_fake)) / (torch.exp(D_fake))))
D_loss.backward()
D_solver.step()
reset_grad()
# Generator
G_sample = G(z)
D_fake = D(G_sample)
""" Total Variation """
# G_loss = -torch.mean(0.5 * torch.tanh(D_fake))
""" Forward KL """
# G_loss = -torch.mean(torch.exp(D_fake - 1))
""" Reverse KL """
G_loss = -torch.mean(-1 - D_fake)
""" Pearson Chi-squared """
# G_loss = -torch.mean(0.25*D_fake**2 + D_fake)
""" Squared Hellinger """
# G_loss = -torch.mean((1 - torch.exp(D_fake)) / (torch.exp(D_fake)))
G_loss.backward()
G_solver.step()
reset_grad()
# Print and plot every now and then
if it % 1000 == 0:
print('Iter-{}; D_loss: {:.4}; G_loss: {:.4}'
.format(it, D_loss.data[0], G_loss.data[0]))
samples = G(z).data.numpy()[:16]
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
if not os.path.exists('out/'):
os.makedirs('out/')
plt.savefig('out/{}.png'.format(str(cnt).zfill(3)), bbox_inches='tight')
cnt += 1
plt.close(fig)