forked from wiseodd/generative-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathf_gan_tensorflow.py
136 lines (97 loc) · 3.71 KB
/
f_gan_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
mb_size = 32
X_dim = 784
z_dim = 64
h_dim = 128
lr = 1e-3
d_steps = 3
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
X = tf.placeholder(tf.float32, shape=[None, X_dim])
z = tf.placeholder(tf.float32, shape=[None, z_dim])
D_W1 = tf.Variable(xavier_init([X_dim, h_dim]))
D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
G_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
G_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
G_W2 = tf.Variable(xavier_init([h_dim, X_dim]))
G_b2 = tf.Variable(tf.zeros(shape=[X_dim]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
theta_D = [D_W1, D_W2, D_b1, D_b2]
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def generator(z):
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
out = tf.matmul(D_h1, D_W2) + D_b2
return out
G_sample = generator(z)
D_real = discriminator(X)
D_fake = discriminator(G_sample)
# Uncomment D_loss and its respective G_loss of your choice
# ---------------------------------------------------------
""" Total Variation """
# D_loss = -(tf.reduce_mean(0.5 * tf.nn.tanh(D_real)) -
# tf.reduce_mean(0.5 * tf.nn.tanh(D_fake)))
# G_loss = -tf.reduce_mean(0.5 * tf.nn.tanh(D_fake))
""" Forward KL """
# D_loss = -(tf.reduce_mean(D_real) - tf.reduce_mean(tf.exp(D_fake - 1)))
# G_loss = -tf.reduce_mean(tf.exp(D_fake - 1))
""" Reverse KL """
# D_loss = -(tf.reduce_mean(-tf.exp(D_real)) - tf.reduce_mean(-1 - D_fake))
# G_loss = -tf.reduce_mean(-1 - D_fake)
""" Pearson Chi-squared """
D_loss = -(tf.reduce_mean(D_real) - tf.reduce_mean(0.25*D_fake**2 + D_fake))
G_loss = -tf.reduce_mean(0.25*D_fake**2 + D_fake)
""" Squared Hellinger """
# D_loss = -(tf.reduce_mean(1 - tf.exp(D_real)) -
# tf.reduce_mean((1 - tf.exp(D_fake)) / (tf.exp(D_fake))))
# G_loss = -tf.reduce_mean((1 - tf.exp(D_fake)) / (tf.exp(D_fake)))
D_solver = (tf.train.AdamOptimizer(learning_rate=lr)
.minimize(D_loss, var_list=theta_D))
G_solver = (tf.train.AdamOptimizer(learning_rate=lr)
.minimize(G_loss, var_list=theta_G))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
i = 0
for it in range(1000000):
X_mb, _ = mnist.train.next_batch(mb_size)
z_mb = sample_z(mb_size, z_dim)
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, z: z_mb})
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={z: z_mb})
if it % 1000 == 0:
print('Iter: {}; D_loss: {:.4}; G_loss: {:.4}'
.format(it, D_loss_curr, G_loss_curr))
samples = sess.run(G_sample, feed_dict={z: sample_z(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'
.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)