forked from wiseodd/generative-models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmode_reg_gan_tensorflow.py
149 lines (107 loc) · 3.78 KB
/
mode_reg_gan_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
mb_size = 32
X_dim = 784
z_dim = 10
h_dim = 128
lam1 = 1e-2
lam2 = 1e-2
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
def log(x):
return tf.log(x + 1e-8)
X = tf.placeholder(tf.float32, shape=[None, X_dim])
z = tf.placeholder(tf.float32, shape=[None, z_dim])
E_W1 = tf.Variable(xavier_init([X_dim, h_dim]))
E_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
E_W2 = tf.Variable(xavier_init([h_dim, z_dim]))
E_b2 = tf.Variable(tf.zeros(shape=[z_dim]))
D_W1 = tf.Variable(xavier_init([X_dim, h_dim]))
D_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))
G_W1 = tf.Variable(xavier_init([z_dim, h_dim]))
G_b1 = tf.Variable(tf.zeros(shape=[h_dim]))
G_W2 = tf.Variable(xavier_init([h_dim, X_dim]))
G_b2 = tf.Variable(tf.zeros(shape=[X_dim]))
theta_E = [E_W1, E_W2, E_b1, E_b2]
theta_G = [G_W1, G_W2, G_b1, G_b2]
theta_D = [D_W1, D_W2, D_b1, D_b2]
def sample_z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def encoder(x):
E_h1 = tf.nn.relu(tf.matmul(x, E_W1) + E_b1)
out = tf.matmul(E_h1, E_W2) + E_b2
return out
def generator(z):
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
def discriminator(x):
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_log_prob = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_log_prob)
return D_prob
G_sample = generator(z)
G_sample_reg = generator(encoder(X))
D_real = discriminator(X)
D_fake = discriminator(G_sample)
D_reg = discriminator(G_sample_reg)
mse = tf.reduce_sum((X - G_sample_reg)**2, 1)
D_loss = -tf.reduce_mean(log(D_real) + log(1 - D_fake))
E_loss = tf.reduce_mean(lam1 * mse + lam2 * log(D_reg))
G_loss = -tf.reduce_mean(log(D_fake)) + E_loss
E_solver = (tf.train.AdamOptimizer(learning_rate=1e-3)
.minimize(E_loss, var_list=theta_E))
D_solver = (tf.train.AdamOptimizer(learning_rate=1e-3)
.minimize(D_loss, var_list=theta_D))
G_solver = (tf.train.AdamOptimizer(learning_rate=1e-3)
.minimize(G_loss, var_list=theta_G))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'):
os.makedirs('out/')
i = 0
for it in range(1000000):
X_mb, _ = mnist.train.next_batch(mb_size)
_, D_loss_curr = sess.run(
[D_solver, D_loss],
feed_dict={X: X_mb, z: sample_z(mb_size, z_dim)}
)
_, G_loss_curr = sess.run(
[G_solver, G_loss],
feed_dict={X: X_mb, z: sample_z(mb_size, z_dim)}
)
_, E_loss_curr = sess.run(
[E_solver, E_loss],
feed_dict={X: X_mb, z: sample_z(mb_size, z_dim)}
)
if it % 1000 == 0:
print('Iter: {}; D_loss: {:.4}; G_loss: {:.4}; E_loss: {:.4}'
.format(it, D_loss_curr, G_loss_curr, E_loss_curr))
samples = sess.run(G_sample, feed_dict={z: sample_z(16, z_dim)})
fig = plot(samples)
plt.savefig('out/{}.png'
.format(str(i).zfill(3)), bbox_inches='tight')
i += 1
plt.close(fig)