|
| 1 | +package problems.onRecursionAndDp; |
| 2 | +import java.util.*; |
| 3 | +import java.lang.*; |
| 4 | +import java.io.*; |
| 5 | +public class DPMinStepsToReduceToOne { |
| 6 | + /** |
| 7 | + * One dimensional DP |
| 8 | + * Given a number n, count minimum steps to minimise it to 1 according to the following criteria: |
| 9 | + * |
| 10 | + * If n is divisible by 2 then we may reduce n to n/2. |
| 11 | + * If n is divisible by 3 then you may reduce n to n/3. |
| 12 | + * Decrement n by 1. |
| 13 | + * |
| 14 | + * |
| 15 | + * Input: |
| 16 | + * |
| 17 | + * The first line of input contains an integer T denoting the number of test cases. Then T test cases follow. The first line of each test case contains an integer N denoting the number n. |
| 18 | + * |
| 19 | + * |
| 20 | + * |
| 21 | + * Output: |
| 22 | + * |
| 23 | + * Output the minimum steps to minimise the number in a new line for each test case. |
| 24 | + * |
| 25 | + * |
| 26 | + * Constraints: |
| 27 | + * |
| 28 | + * 1<= T <=1000 |
| 29 | + * |
| 30 | + * 1<= N <=10000 |
| 31 | + * |
| 32 | + * |
| 33 | + * Example: |
| 34 | + * |
| 35 | + * Input: |
| 36 | + * |
| 37 | + * 2 |
| 38 | + * |
| 39 | + * 10 |
| 40 | + * |
| 41 | + * 6 |
| 42 | + * |
| 43 | + * Output: |
| 44 | + * |
| 45 | + * 3 |
| 46 | + * |
| 47 | + * 2 |
| 48 | + * @param args |
| 49 | + * @throws IOException |
| 50 | + */ |
| 51 | + public static void main (String[] args) throws IOException |
| 52 | + { |
| 53 | + Scanner in = new Scanner(System.in); |
| 54 | + StringBuilder result = new StringBuilder(); |
| 55 | + int t = in.nextInt(); |
| 56 | + int[] nums = new int[t]; |
| 57 | + int max = -1; |
| 58 | + for(int i=0;i<t;i++){ |
| 59 | + nums[i] = in.nextInt(); |
| 60 | + if(nums[i] > max ) max = nums[i]; |
| 61 | + } |
| 62 | + |
| 63 | + |
| 64 | + int[] dp = new int[max+1]; |
| 65 | + dp[1] = 0; |
| 66 | + if(max > 1) |
| 67 | + dp[2] = 1; |
| 68 | + if(max>2) |
| 69 | + dp[3] = 1; |
| 70 | + |
| 71 | + for(int i = 4;i<=max;i++){ |
| 72 | + int q1 = Integer.MAX_VALUE; |
| 73 | + int q2 = Integer.MAX_VALUE; |
| 74 | + int q3 = Integer.MAX_VALUE; |
| 75 | + if(i % 3 == 0) q1 = 1 + dp[i / 3]; |
| 76 | + if(i % 2 == 0) q2 = 1 + dp[i / 2]; |
| 77 | + q3 = 1 + dp[i - 1]; |
| 78 | + |
| 79 | + dp[i] = Math.min(q1, Math.min(q2, q3)); |
| 80 | + } |
| 81 | + for( int i = 0; i < t - 1; i++) { |
| 82 | + result.append(dp[nums[i]]).append("\n"); |
| 83 | + } |
| 84 | + result.append(dp[nums[t-1]]); |
| 85 | + System.out.print(result.toString()); |
| 86 | + |
| 87 | + } |
| 88 | +} |
0 commit comments