forked from UnityCommunity/UnityLibrary
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetaball.cs
979 lines (885 loc) · 43.5 KB
/
Metaball.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// taken from http://wiki.unity3d.com/index.php?title=MetaBalls&oldid=16461
/**
* Metaball implementation by Brian R. Cowan http://www.briancowan.net/
* Metaball tables at http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
* Examples at http://www.briancowan.net/unity/fx
*
* Code provided as-is. You agree by using this code that I am not liable for any damage
* it could possibly cause to you, your machine, or anything else. And the code is not meant
* to be used for any medical uses or to run nuclear reactors or robots or such and so.
*
* Should be easily portable to any other language, all Unity Specific code is labeled so,
* adapt it to any other environment. To use, attach the script to an empty object with a
* Mesh Renderer and Mesh Filter. The created cubes will be one unit in size in XYZ.
* Modify Update() and Start() to change the amount and movement and size of the blobs.
*
* Id love to see any project you use the code in.
*
* Mail any comments to: brian@briancowan.net (Vector or Vector426 on #otee-unity)
*
* Cheers & God bless
*/
/**
*There is a small bug in this code that produces 1 to 4 overlapping triangles
*mostly in the centre of the mesh, sometimes on a side resulting in a white patch
*it appears in other shapes than Metaballs.
*if it's too hard to fix the code, scanning duplicate triangles is possible
*the duplicates occur in the 1st 4 triangles and anywhere after
*it seems the code doesn't check duplicates for the 1st 4 triangles
*the above issue is probably relate to the march() function doCube 1x time
*and then sending recurse() function docube in the same space
* so perhaps delete if(doCube(cube)) { condition in march() and just recurse
*also it processes 278700 pts instead of 32768 pts if made to march all spaces
*/
/*Unity Specific*/
using UnityEngine;
using System.Collections;
namespace UnityLibrary
{
public class Metaball : MonoBehaviour
{
/*Amount of cubes in X/Y/Z directions, Dimension will always be from -.5f to .5f in XYZ
remember to call Regen() if changing!
*/
int _dimX = 30;
int _dimY = 30;
int _dimZ = 30;
public int dimX
{
get { return _dimX; }
set { _dimX = value; Regen(); }
}
public int dimY
{
get { return _dimY; }
set { _dimY = value; Regen(); }
}
public int dimZ
{
get { return _dimZ; }
set { _dimZ = value; Regen(); }
}
/*Blobs are a staggered array of floats, where first index is blob, and second is 0=x, 1=y 2=z 3=power
Multidim might be slightly faster, but staggered made the code a little cleaner IMO*/
public float[][] blobs;
/*Cutoff intensity, where the surface of mesh will be created*/
public float isoLevel = .5f;
/*Scratch buffers for Vertices/Normals/Tris */
private Vector3[] newVertex;
private Vector3[] newNormal;
private Vector2[] newUV;
private int[] newTri;
/*Pointer into scratch buffers for tris and vertices(also used for UVs and Normals)
at the end of a frame it will give the total amount of each*/
private int triP = 0;
private int vertP = 0;
/*Generated at startup for dimX,dimY,dimZ,
all the points, edges, cubes in the 3D lattice*/
private mcPoint[] _points;
private mcEdge[] _edges;
private mcCube[] _cubes;
/*Scratch buffers for use within functions, to eliminate the usage of new almost entirely each frame*/
private Vector3[] tada;
private Vector2[] tada2;
private int tadac, tadac2;
private int tadam = 50000;
/*Current frame counter*/
private int pctr = 0;
/*Cube Class*/
private class mcCube
{
public mcCube()
{
cntr = 0;
edges = new mcEdge[12];
for (int i = 0; i < 12; i++)
{
edges[i] = null;
}
points = new mcPoint[8];
}
/*12 Edges, see march() for their positioning*/
public mcEdge[] edges;
/*8 Points, see march() for their positioning*/
public mcPoint[] points;
/*last frame this cube was processed*/
public int cntr;
/*Pointers into the latice array*/
public int px;
public int py;
public int pz;
}
/*Edge class*/
private class mcEdge
{
/*the vector of the calculated point*/
public Vector3 v3;
/*index into newVertex/Normal/Uv of calculated point*/
public int vi;
/*Last frame this was calculated at*/
public int cntr;
/*axis of edge*/
public int axisI;
public mcEdge(int axisI)
{
this.cntr = 0;
this.axisI = axisI;
}
}
/*Point (in lattice) class*/
public class mcPoint
{
/*Calculated Intensity or Power of point*/
public float _i;
public int px, py, pz;
private Metaball mcblob;
public int cntr;
/*Object Space position of point*/
public float[] index;
public mcPoint(float x, float y, float z, int px, int py, int pz, Metaball thismcblob)
{
this.index = new float[3];
index[0] = x; index[1] = y; index[2] = z;
this.px = px;
this.py = py;
this.pz = pz;
this.cntr = 0;
this.mcblob = thismcblob;
}
/*Axis letter accessors*/
public float x
{
get { return index[0]; }
set { index[0] = value; }
}
public float y
{
get { return index[1]; }
set { index[1] = value; }
}
public float z
{
get { return index[2]; }
set { index[2] = value; }
}
/*Calculate the power of a point only if it hasn't been calculated already for this frame*/
public float i()
{
float pwr;
if (cntr < mcblob.pctr)
{
cntr = mcblob.pctr;
pwr = 0f;
for (int jc = 0; jc < this.mcblob.blobs.Length; jc++)
{
float[] pb = this.mcblob.blobs[jc];
pwr += (1.0f / Mathf.Sqrt(((pb[0] - this.x) * (pb[0] - this.x)) + ((pb[1] - this.y) * (pb[1] - this.y)) + ((pb[2] - this.z) * (pb[2] - this.z)))) * pb[3];
}
this._i = pwr;
}
return this._i;
}
public float this[int idx]
{
get
{
return index[idx];
}
set
{
index[idx] = value;
}
}
}
/* Normals are calculated by 'averaging' all the derivatives of the Blob power functions*/
private Vector3 calcNormal(Vector3 pnt)
{
int jc;
Vector3 result = tada[tadac++];
result.x = 0; result.y = 0; result.z = 0;
for (jc = 0; jc < blobs.Length; jc++)
{
float[] pb = blobs[jc];
Vector3 current = tada[tadac++];
current.x = pnt.x - pb[0];
current.y = pnt.y - pb[1];
current.z = pnt.z - pb[2];
float mag = current.magnitude;
float pwr = .5f * (1f / (mag * mag * mag)) * pb[3];
result = result + (current * pwr);
}
return result.normalized;
}
/*Given xyz indices into lattice, return referring cube */
private mcCube getCube(int x, int y, int z)
{
if (x < 0 || y < 0 || z < 0 || x >= dimX || y >= dimY || z >= dimZ) { return null; }
return _cubes[z + (y * (dimZ)) + (x * (dimZ) * (dimY))];
}
/*Given xyz indices into lattice, return referring vertex */
private mcPoint getPoint(int x, int y, int z)
{
if (x < 0 || y < 0 || z < 0 || x > dimX || y > dimY || z > dimZ) { return null; }
return _points[z + (y * (dimZ + 1)) + (x * (dimZ + 1) * (dimY + 1))];
}
/*Return the interpolated position of point on an Axis*/
private Vector3 mPos(mcPoint a, mcPoint b, int axisI)
{
float mu = (isoLevel - a.i()) / (b.i() - a.i());
Vector3 tmp = tada[tadac++];
tmp[0] = a[0]; tmp[1] = a[1]; tmp[2] = a[2];
tmp[axisI] = a[axisI] + (mu * (b[axisI] - a[axisI]));
return tmp;
}
/*If an edge of a cube has not been processed, find the interpolated point for
that edge (assumes the boundary crosses the edge) and compute the normal
for that point, as well as assigning it an index into the vertex list*/
private void genEdge(mcCube cube, int edgei, int p1i, int p2i)
{
Vector3 v;
mcEdge e = cube.edges[edgei];
if (e.cntr < pctr)
{
v = mPos(cube.points[p1i], cube.points[p2i], e.axisI);
e.v3 = v;
e.vi = vertP;
newNormal[vertP] = calcNormal(v);
newVertex[vertP++] = v;
e.cntr = pctr;
}
}
/*Calculate a cube:
First set a boolean pointer made up of all the vertices within the cube
then (if not all in or out of the surface) go through all the edges that
are crossed by the surface and make sure that a vertex&normal is assigned
at the point of crossing. Then add all the triangles that cover the surface
within the cube.
Returns true if the surface crosses the cube, false otherwise.*/
private bool doCube(mcCube cube)
{
int edgec, vertc;
edgec = 0; vertc = 0;
int cubeIndex = 0;
if (cube.points[0].i() > isoLevel) { cubeIndex |= 1; }
if (cube.points[1].i() > isoLevel) { cubeIndex |= 2; }
if (cube.points[2].i() > isoLevel) { cubeIndex |= 4; }
if (cube.points[3].i() > isoLevel) { cubeIndex |= 8; }
if (cube.points[4].i() > isoLevel) { cubeIndex |= 16; }
if (cube.points[5].i() > isoLevel) { cubeIndex |= 32; }
if (cube.points[6].i() > isoLevel) { cubeIndex |= 64; }
if (cube.points[7].i() > isoLevel) { cubeIndex |= 128; }
int edgeIndex = edgeTable[cubeIndex];
edgec += edgeIndex;
if (edgeIndex != 0)
{
if ((edgeIndex & 1) > 0) { genEdge(cube, 0, 0, 1); }
if ((edgeIndex & 2) > 0) { genEdge(cube, 1, 1, 2); }
if ((edgeIndex & 4) > 0) { genEdge(cube, 2, 2, 3); }
if ((edgeIndex & 0x8) > 0) { genEdge(cube, 3, 3, 0); }
if ((edgeIndex & 0x10) > 0) { genEdge(cube, 4, 4, 5); }
if ((edgeIndex & 0x20) > 0) { genEdge(cube, 5, 5, 6); }
if ((edgeIndex & 0x40) > 0) { genEdge(cube, 6, 6, 7); }
if ((edgeIndex & 0x80) > 0) { genEdge(cube, 7, 7, 4); }
if ((edgeIndex & 0x100) > 0) { genEdge(cube, 8, 0, 4); }
if ((edgeIndex & 0x200) > 0) { genEdge(cube, 9, 1, 5); }
if ((edgeIndex & 0x400) > 0) { genEdge(cube, 10, 2, 6); }
if ((edgeIndex & 0x800) > 0) { genEdge(cube, 11, 3, 7); }
int tpi = 0;
int tmp;
while (triTable[cubeIndex, tpi] != -1)
{
tmp = cube.edges[triTable[cubeIndex, tpi + 2]].vi;
newTri[triP++] = tmp; vertc += tmp;
tmp = cube.edges[triTable[cubeIndex, tpi + 1]].vi;
newTri[triP++] = tmp; vertc += tmp;
tmp = cube.edges[triTable[cubeIndex, tpi]].vi;
newTri[triP++] = tmp; vertc += tmp;
tpi += 3;
}
return true;
}
else
{
return false;
}
}
/*Recurse all the neighboring cubes where thy contain part of the surface*/
/*Counter to see how many cubes where processed*/
int cubec;
private void recurseCube(mcCube cube)
{
mcCube nCube;
int jx, jy, jz;
jx = cube.px; jy = cube.py; jz = cube.pz;
cubec++;
/* Test 6 axis cases. This seems to work well, no need to test all 26 cases */
nCube = getCube(jx + 1, jy, jz);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
nCube = getCube(jx - 1, jy, jz);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
nCube = getCube(jx, jy + 1, jz);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
nCube = getCube(jx, jy - 1, jz);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
nCube = getCube(jx, jy, jz + 1);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
nCube = getCube(jx, jy, jz - 1);
if (nCube != null && nCube.cntr < pctr) { nCube.cntr = pctr; if (doCube(nCube)) { recurseCube(nCube); } }
}
/*Go through all the Blobs, and travel from the center outwards in a negative Z direction
until we reach the surface, then begin to recurse around the surface. This isn't flawless
if the blob isn't completely within the lattice boundaries in the minimal Z axis and no
other blob that does check out is in contact with it. The blob will dissapear, but otherwise
works well*/
private void march()
{
int i, jx, jy, jz;
for (i = 0; i < blobs.Length; i++)
{
float[] pb = blobs[i];
jx = (int)((pb[0] + .5f) * dimX);
jy = (int)((pb[1] + .5f) * dimY);
jz = (int)((pb[2] + .5f) * dimZ);
while (jz >= 0)
{
mcCube cube = getCube(jx, jy, jz);
if (cube != null && cube.cntr < pctr)
{
if (doCube(cube))
{
recurseCube(cube);
jz = -1;
}
cube.cntr = pctr;
}
else
{
jz = -1;
}
jz -= 1;
}
}
}
/*Unity and Sample Specific, scratch caches to not reallocate vertices/tris/etc...*/
Vector3[] fv, fn;
int[] ft;
Vector2[] fuv;
//Last Status Post
private float lt = 0f;
/*Unity and Sample Specific*/
private void renderMesh()
{
int i;
/*Clear the Vertices that don't have any real information assigned to them */
for (i = 0; i < vertP; i++)
{
fv[i] = newVertex[i]; fn[i] = newNormal[i];
fuv[i] = tada2[tadac2++];
Vector3 fuvt = transform.TransformPoint(fn[i]).normalized;
fuv[i].x = (fuvt.x + 1f) * .5f; fuv[i].y = (fuvt.y + 1f) * .5f;
}
// fuv[i].x=fn[i].x;fuv[i].y=fn[i].y;}
for (i = vertP; i < fv.Length; i++)
{
fv[i][0] = 0; fn[i][0] = 0; fuv[i][0] = 0;
fv[i][1] = 0; fn[i][1] = 0; fuv[i][1] = 0;
fv[i][2] = 0;
}
for (i = 0; i < triP; i++) { ft[i] = newTri[i]; }
for (i = triP; i < ft.Length; i++) { ft[i] = 0; }
Mesh mesh = ((MeshFilter)GetComponent("MeshFilter")).mesh;
mesh.vertices = fv;
mesh.uv = fuv;
mesh.triangles = ft;
mesh.normals = fn;
/*For Disco Ball Effect*/
//mesh.RecalculateNormals();
}
/*What is needed to do every frame for the calculation and rendering of the Metaballs*/
void doFrame()
{
tadac = 0;
tadac2 = 0;
cubec = 0;
pctr++;
triP = 0;
vertP = 0;
march();
renderMesh();
}
/*Regenerate Lattice and Connections, when changing Dimensions of Lattice*/
void Regen()
{
startObjs();
startEngine();
}
//Unity and Sample specific
void Update()
{
//Update FPS and counters every second
//if (lt + 1 < Time.time)
//{
// lt = Time.time;
// GUIText guit = (GUIText)GameObject.Find("guit").guiText;
// guit.text = "T:" + triP + " V:" + vertP + " C:" + cubec + " FPS:" + (int)(1f / Time.deltaTime);
//}
blobs[0][0] = .12f + .12f * (float)Mathf.Sin((float)Time.time * .50f);
blobs[0][2] = .06f + .23f * (float)Mathf.Cos((float)Time.time * .2f);
blobs[1][0] = .12f + .12f * (float)Mathf.Sin((float)Time.time * .2f);
blobs[1][2] = -.23f + .10f * (float)Mathf.Cos((float)Time.time * 1f);
blobs[2][1] = -.03f + .24f * (float)Mathf.Sin((float)Time.time * .35f);
blobs[3][1] = .126f + .10f * (float)Mathf.Cos((float)Time.time * .1f);
blobs[4][0] = .206f + .1f * (float)Mathf.Cos((float)Time.time * .5f);
blobs[4][1] = .056f + .2f * (float)Mathf.Sin((float)Time.time * .3f);
blobs[4][2] = .25f + .08f * (float)Mathf.Cos((float)Time.time * .2f);
transform.Rotate(Time.deltaTime * 10f, 0, Time.deltaTime * .6f);
doFrame();
}
//Unity and Sample Specific
void Start()
{
lt = 0f;
blobs = new float[5][];
blobs[0] = new float[] { .16f, .26f, .16f, .13f };
blobs[1] = new float[] { .13f, -.134f, .35f, .12f };
blobs[2] = new float[] { -.18f, .125f, -.25f, .16f };
blobs[3] = new float[] { -.13f, .23f, .255f, .13f };
blobs[4] = new float[] { -.18f, .125f, .35f, .12f };
isoLevel = 1.95f;
Regen();
}
/*Unity Specific starting of engine*/
void startEngine()
{
((MeshFilter)GetComponent("MeshFilter")).mesh = new Mesh();
}
/*Generate the Cube Lattice
All shared vertices and edges are connected across cubes,
it's not perfect in that the edges along the lower index borders
are not connected, but all the rest are, this shouldn't make any
noticeable visual impact, and have no performance impact unless
a blob lies along those borders*/
private void startObjs()
{
int i;
float jx, jy, jz;
int ijx, ijy, ijz;
int pointCount = ((dimX + 1) * (dimY + 1) * (dimZ + 1));
int cubeCount = (dimX * dimY * dimZ);
int edgeCount = (cubeCount * 3) + ((2 * dimX * dimY) + (2 * dimX * dimZ) + (2 * dimY * dimZ)) + dimX + dimY + dimZ; //Ideal Edge Count
int edgeNow = edgeCount + ((dimX * dimY) + (dimY * dimZ) + (dimZ * dimX)) * 2; //Haven't combined the edges of the 0 index borders
//Should be a pretty safe amount
int tmpv = (int)(dimX * dimY * dimZ / 7);
tadam = tmpv * 4;
fv = new Vector3[tmpv];
fn = new Vector3[tmpv];
fuv = new Vector2[tmpv];
//Pretty save amount of Tris as well
ft = new int[(int)(cubeCount * .75)];
newVertex = new Vector3[300000];
newTri = new int[300000];
newNormal = new Vector3[300000];
tada = new Vector3[tadam * 2];
tada2 = new Vector2[tadam * 2];
//newUV=new Vector2[300000];
_cubes = new mcCube[cubeCount];
_points = new mcPoint[pointCount];
_edges = new mcEdge[edgeNow];
for (i = 0; i < tadam * 2; i++)
{
tada[i] = new Vector3(0, 0, 0);
tada2[i] = new Vector2(0, 0);
}
for (i = 0; i < edgeNow; i++)
{
_edges[i] = new mcEdge(-1);
}
i = 0;
for (jx = 0.0f; jx <= dimX; jx++)
{
for (jy = 0.0f; jy <= dimY; jy++)
{
for (jz = 0.0f; jz <= dimZ; jz++)
{
_points[i] = new mcPoint((jx / dimX) - .5f, (jy / dimY) - .5f, (jz / dimZ) - .5f, (int)jx, (int)jy, (int)jz, this);
i++;
}
}
}
for (i = 0; i < cubeCount; i++)
{
_cubes[i] = new mcCube();
}
int ep = 0;
mcCube c;
mcCube tc;
i = 0;
int topo = 0;
for (ijx = 0; ijx < dimX; ijx++)
{
for (ijy = 0; ijy < dimY; ijy++)
{
for (ijz = 0; ijz < dimZ; ijz++)
{
c = _cubes[i];
i++;
c.px = ijx; c.py = ijy; c.pz = ijz;
mcPoint[] cpt = c.points;
cpt[0] = getPoint(ijx, ijy, ijz);
cpt[1] = getPoint(ijx + 1, ijy, ijz);
cpt[2] = getPoint(ijx + 1, ijy + 1, ijz);
cpt[3] = getPoint(ijx, ijy + 1, ijz);
cpt[4] = getPoint(ijx, ijy, ijz + 1);
cpt[5] = getPoint(ijx + 1, ijy, ijz + 1);
cpt[6] = getPoint(ijx + 1, ijy + 1, ijz + 1);
cpt[7] = getPoint(ijx, ijy + 1, ijz + 1);
mcEdge[] e = c.edges;
e[5] = _edges[ep++]; e[5].axisI = 1;
e[6] = _edges[ep++]; e[6].axisI = 0;
e[10] = _edges[ep++]; e[10].axisI = 2;
tc = getCube(ijx + 1, ijy, ijz);
if (tc != null) { tc.edges[11] = e[10]; tc.edges[7] = e[5]; }
tc = getCube(ijx, ijy + 1, ijz);
if (tc != null) { tc.edges[4] = c.edges[6]; tc.edges[9] = c.edges[10]; }
tc = getCube(ijx, ijy + 1, ijz + 1);
if (tc != null) { tc.edges[0] = c.edges[6]; }
tc = getCube(ijx + 1, ijy, ijz + 1);
if (tc != null) { tc.edges[3] = c.edges[5]; }
tc = getCube(ijx + 1, ijy + 1, ijz);
if (tc != null) { tc.edges[8] = c.edges[10]; }
tc = getCube(ijx, ijy, ijz + 1);
if (tc != null) { tc.edges[1] = c.edges[5]; tc.edges[2] = c.edges[6]; }
if (e[0] == null)
{
e[0] = _edges[ep++]; e[0].axisI = 0;
}
if (e[1] == null)
{
e[1] = _edges[ep++]; e[1].axisI = 1;
}
if (e[2] == null)
{
e[2] = _edges[ep++]; e[2].axisI = 0;
}
else { topo++; }
if (e[3] == null)
{
e[3] = _edges[ep++]; e[3].axisI = 1;
}
if (e[4] == null)
{
e[4] = _edges[ep++]; e[4].axisI = 0;
}
if (e[7] == null)
{
e[7] = _edges[ep++]; e[7].axisI = 1;
}
if (e[8] == null)
{
e[8] = _edges[ep++]; e[8].axisI = 2;
}
if (e[9] == null)
{
e[9] = _edges[ep++]; e[9].axisI = 2;
}
if (e[11] == null)
{
e[11] = _edges[ep++]; e[11].axisI = 2;
}
}
}
}
}
/*Courtesy of http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/*/
private int[,] triTable = new int[,]
{{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}};
private int[] edgeTable = new int[] {
0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0 };
}
}