@@ -205,7 +205,7 @@ def __init__(
205
205
safety_checker : StableDiffusionSafetyChecker ,
206
206
feature_extractor : CLIPImageProcessor ,
207
207
language_adapter : TranslatorNoLN = None ,
208
- tensor_norm : torch .FloatTensor = None ,
208
+ tensor_norm : torch .Tensor = None ,
209
209
requires_safety_checker : bool = True ,
210
210
):
211
211
super ().__init__ ()
@@ -231,7 +231,7 @@ def load_language_adapter(
231
231
num_token : int ,
232
232
dim : int ,
233
233
dim_out : int ,
234
- tensor_norm : torch .FloatTensor ,
234
+ tensor_norm : torch .Tensor ,
235
235
mult : int = 2 ,
236
236
depth : int = 5 ,
237
237
):
@@ -242,7 +242,7 @@ def load_language_adapter(
242
242
)
243
243
self .language_adapter .load_state_dict (torch .load (model_path ))
244
244
245
- def _adapt_language (self , prompt_embeds : torch .FloatTensor ):
245
+ def _adapt_language (self , prompt_embeds : torch .Tensor ):
246
246
prompt_embeds = prompt_embeds / 3
247
247
prompt_embeds = self .language_adapter (prompt_embeds ) * (self .tensor_norm / 2 )
248
248
return prompt_embeds
@@ -254,8 +254,8 @@ def encode_prompt(
254
254
num_images_per_prompt ,
255
255
do_classifier_free_guidance ,
256
256
negative_prompt = None ,
257
- prompt_embeds : Optional [torch .FloatTensor ] = None ,
258
- negative_prompt_embeds : Optional [torch .FloatTensor ] = None ,
257
+ prompt_embeds : Optional [torch .Tensor ] = None ,
258
+ negative_prompt_embeds : Optional [torch .Tensor ] = None ,
259
259
lora_scale : Optional [float ] = None ,
260
260
clip_skip : Optional [int ] = None ,
261
261
):
@@ -275,10 +275,10 @@ def encode_prompt(
275
275
The prompt or prompts not to guide the image generation. If not defined, one has to pass
276
276
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
277
277
less than `1`).
278
- prompt_embeds (`torch.FloatTensor `, *optional*):
278
+ prompt_embeds (`torch.Tensor `, *optional*):
279
279
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
280
280
provided, text embeddings will be generated from `prompt` input argument.
281
- negative_prompt_embeds (`torch.FloatTensor `, *optional*):
281
+ negative_prompt_embeds (`torch.Tensor `, *optional*):
282
282
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
283
283
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
284
284
argument.
@@ -535,7 +535,7 @@ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32
535
535
data type of the generated embeddings
536
536
537
537
Returns:
538
- `torch.FloatTensor `: Embedding vectors with shape `(len(timesteps), embedding_dim)`
538
+ `torch.Tensor `: Embedding vectors with shape `(len(timesteps), embedding_dim)`
539
539
"""
540
540
assert len (w .shape ) == 1
541
541
w = w * 1000.0
@@ -594,9 +594,9 @@ def __call__(
594
594
num_images_per_prompt : Optional [int ] = 1 ,
595
595
eta : float = 0.0 ,
596
596
generator : Optional [Union [torch .Generator , List [torch .Generator ]]] = None ,
597
- latents : Optional [torch .FloatTensor ] = None ,
598
- prompt_embeds : Optional [torch .FloatTensor ] = None ,
599
- negative_prompt_embeds : Optional [torch .FloatTensor ] = None ,
597
+ latents : Optional [torch .Tensor ] = None ,
598
+ prompt_embeds : Optional [torch .Tensor ] = None ,
599
+ negative_prompt_embeds : Optional [torch .Tensor ] = None ,
600
600
output_type : Optional [str ] = "pil" ,
601
601
return_dict : bool = True ,
602
602
cross_attention_kwargs : Optional [Dict [str , Any ]] = None ,
@@ -635,14 +635,14 @@ def __call__(
635
635
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
636
636
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
637
637
generation deterministic.
638
- latents (`torch.FloatTensor `, *optional*):
638
+ latents (`torch.Tensor `, *optional*):
639
639
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
640
640
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
641
641
tensor is generated by sampling using the supplied random `generator`.
642
- prompt_embeds (`torch.FloatTensor `, *optional*):
642
+ prompt_embeds (`torch.Tensor `, *optional*):
643
643
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
644
644
provided, text embeddings are generated from the `prompt` input argument.
645
- negative_prompt_embeds (`torch.FloatTensor `, *optional*):
645
+ negative_prompt_embeds (`torch.Tensor `, *optional*):
646
646
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
647
647
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
648
648
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
0 commit comments