-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInv.cpp
executable file
·145 lines (136 loc) · 3.43 KB
/
Inv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/////////////////////////////////////////////////////////////////////////
// Program : inv.cpp
// Coded by : Prof. Gang-Gyoo Jin, Korea Maritime University
// Coded on : 12/12/2003
#include "cmatrix.h"
#include "imsl.h"
/////////////////////////////////////////////////////////////////////////
// Inverse of a REAL matrix
void ms_Inv(REAL **a0, int n, REAL **ia)
{
int i, j, *indx;
REAL **a, *b, d;
void lubksb(REAL** a, int n, int *indx, REAL *d);
void ludcmp(REAL** a, int n, int *indx, REAL *b);
a= ms_RMatrix(1,n,1,n);
b= ms_RVector(1,n);
indx= ms_IVector(1,n);
for(i=0; i<n; i++)
for(j=0; j<n; j++)
a[i+1][j+1]= a0[i][j];
ludcmp(a, n, indx, &d);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
b[j+1]= 0;
b[i+1]= 1;
lubksb(a, n, indx, b);
for(j=0;j<n;j++)
ia[j][i]=b[j+1];
}
ms_Free_RMatrix(a,1,n,1,n);
ms_Free_RVector(b,1,n);
ms_Free_IVector(indx,1,n);
return;
}
/////////////////////////////////////////////////////////////////////////
// Inverse of a REAL matrix
RMATRIX ms_Inv(const RMATRIX &a0)
{
int i, j, *indx, n=a0.n, m=a0.m;
REAL **a, *b, d;
RMATRIX ia(n,m);
void lubksb(REAL** a, int n, int *indx, REAL *d);
void ludcmp(REAL** a, int n, int *indx, REAL *b);
if (n!=m)
ErrorMsg ("Error in 'Inv(RMATRIX)': matrix is not square\n");
a= ms_RMatrix(1,n,1,n);
b= ms_RVector(1,n);
indx= ms_IVector(1,n);
for(i=0; i<n; i++)
for(j=0; j<n; j++)
a[i+1][j+1]= a0(i,j);
ludcmp(a, n, indx, &d);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
b[j+1]= (i==j) ? 1:0;
lubksb(a, n, indx, b);
for(j=0;j<n;j++)
ia(j,i)=b[j+1];
}
ms_Free_RMatrix(a,1,n,1,n);
ms_Free_RVector(b,1,n);
ms_Free_IVector(indx,1,n);
return ia;
}
/////////////////////////////////////////////////////////////////////////
// Inverse of a COMPLEX matrix
#define CSWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
CMATRIX ms_Inv(const CMATRIX& f)
{
if (f.n!=f.m)
ErrorMsg ("Error in 'Inv(CMATRIX)': matrix is not square\n");
if (f.num==1)
{
CMATRIX r(1,1);
r(0) = 1/f(0);
return r;
}
CMATRIX g(f);
int n=f.n;
int *indxc, *indxr, *ipiv;
int i, icol, irow, j, k, l, ll;
COMPLEX temp, pivinv, dum, big;
indxc = new int[n];
indxr = new int[n];
ipiv = new int[n];
for (j=0; j<n; j++) ipiv[j]=0;
for (i=0; i<n; i++)
{
Zero(big);
for (j=0; j<n; j++)
if (ipiv[j] != 1)
for (k=0; k<n; k++)
{
if (ipiv[k] == 0)
{
if (g(j,k) >= big)
{
big = g(j,k);
irow=j;
icol=k;
}
}
else if (ipiv[k] > 1)
ErrorMsg("Error in 'Inv': Singular Matrix-1");
}
++(ipiv[icol]);
if (irow != icol)
for (l=0; l<n; l++) CSWAP(g(irow,l), g(icol,l))
indxr[i]=irow;
indxc[i]=icol;
if (g(icol,icol) == 0)
ErrorMsg("Error in 'Inv': Singular Matrix-2");
pivinv = 1.0/g(icol, icol);
g(icol, icol) = 1;
for (l=0; l<n; l++) g(icol, l) *= pivinv;
for (ll=0; ll<n; ll++)
if (ll != icol)
{
dum=g(ll, icol);
g(ll,icol) = 0;
for (l=0; l<n; l++) g(ll,l) -= g(icol,l)*dum;
}
}
for (l=n-1; l>=0; l--)
{
if (indxr[l] != indxc[l])
for (k=0; k<n; k++) CSWAP(g(k,indxr[l]), g(k,indxc[l]));
}
delete indxc;
delete indxr;
delete ipiv;
return g;
}
#undef CSWAP